Math, asked by bazigarooo, 8 months ago

If x -(2/x)=3, then x^3(-8/x^3)
is equal to _?

Answers

Answered by DarkCreed
0

Answer:

- 8 is the ans

Step-by-step explanation:

27 + 8 /7 × -8/(2+8/27)

Answered by Anonymous
1

 \sf \: We \:  know \:  the \:  formula,

  \boxed{ \sf{ ( {x -  \frac{1}{x} )}^{3}  =  {x}^{3}  -   \frac{1}{ {x}^{3} }  - 3(x -  \frac{1}{x} ) }}

 \sf \: ( {x -  \frac{2}{x}) }^{3}  =  {x}^{3}  -  \frac{8}{ {x}^{3}  } - 3 (x -  \frac{2}{x} ) \\  \\  \sf \: ( {3})^{3}  \:  =  \:  {x}^{3}  -  \frac{8}{ {x}^{3} }  - 3(3) \\  \\  \sf \: 27 \:  =  \:  {x}^{3}  -  \frac{8}{ {x}^{3} }  - 9 \\  \\  \sf \: 27 + 9 \:  =  \:  {x}^{3}  -  \frac{8}{ {x}^{3} }  \\  \\   \boxed{ \red{\sf {\implies\:  {x}^{3}  -  \frac{8}{ {x}^{3} }  = 36}}}

Similar questions