if (x - 2/x) = 6 find the value of (x^3 -8/x^3)
Answers
Answered by
7
Answer:
234
Step-by-step explanation:(x-2/x)=(6)^3
=X^3-8/x^3-3×x+1/x=216
=x^3-8/x^3-18=216
=x^3-8/x^3=216+18
=x^3-8/x^3=234
Answered by
7
EXPLANATION.
⇒ (x - 2/x) = 6.
As we know that,
Cubing on both sides of the equation, we get.
⇒ (x - 2/x)³ = (6)³.
⇒ (x)³ - 3(x)²(2/x) + 3(x)(2/x)² - (2/x)³ = (6)³.
⇒ x³ - (6x) + (12/x) - (8/x³) = 216.
⇒ x³ - 6(x - 2/x) - 8/x³ = 216.
Put the value of (x - 2/x) = 6 in the equation, we get.
⇒ x³ - 6(6) - 8/x³ = 216.
⇒ x³ - 36 - 8/x³ = 216.
⇒ x³ - 8/x³ = 216 + 36.
⇒ x³ - 8/x³ = 252.
Similar questions