Math, asked by watermelon10, 9 months ago

if x=2^√x then find the derivative of y with respect to x​

Answers

Answered by aadyarajvanshi
1

Answer:

y= 2^√y

Step-by-step explanation:

thats your answer

Answered by waqarsd
0

Answer:

 \color{blue} \bold{ \boxed{\frac{dy}{dx} =    \frac{{2}^{ \sqrt{x} - 1 } }{2}log2}}

Step-by-step explanation:

 \bold{y =  {2}^{ \sqrt{x} } } \\  \\  =  > apply \: log \\  \\  \bold{log \: y = log \:  {2}^{ \sqrt{x} } } \\  \\  =  > log {x}^{y}  = y \: logx \\  \\  \bold{log \: y =  \:  \sqrt{x}  \: log \: 2} \\  \\  =  > diff \:  \: wrt \:  \:  \: x \\  \\  \frac{d}{dx}  (logx) =  \frac{1}{x} \\  \\  \frac{d}{dx} {x}^{n}  = n {x}^{n - 1}   \\  \\  \bold{ \frac{1}{y}  \frac{dy}{dx}   = \frac{1}{2 \sqrt{x} } log2} \\  \\  \bold{ \frac{dy}{dx}  =  \frac{y}{2 \sqrt{x} } log2} \\  \\  \bold{ \frac{dy}{dx} =    \frac{{2}^{ \sqrt{x} - 1 } }{2}log2}

   <blue><bold><marquee> HOPE IT HELPS

Similar questions