Math, asked by pritisunainakolkata, 11 months ago

if x^2+y^2=13 and xy=6, find x+y using identity​

Answers

Answered by vaishnavitiwari1041
2

Answer:

Here's your answer

Given,

 {x}^{2}  +  {y}^{2}  = 13 \:  \:  \: and \: xy = 6 \\  \\ x + y = find

By using identity

 {x}^{2}  +  {y}^{2}  = (x + y)( {x}^{2}  +  {y}^{2}  </strong><strong>-</strong><strong> xy) \\  \\ 13 = (x + y)(13 </strong><strong>-</strong><strong> 6) \\  \\ 13 = (x + y)(</strong><strong>7</strong><strong>) \\  \\ 13 </strong><strong>-</strong><strong>7</strong><strong> = (x + y) \\  \\  </strong><strong>6</strong><strong> = (x + y)

The answer is 6...

Hope it helps

Answered by Brâiñlynêha
3

\huge\mathfrak{\red{\underline{Answer:-}}}

\mathfrak{\underline{Given:-}}

\mathfrak x{}^{2}+y{}^{2}=13

\mathfrak xy=6

\mathfrak( x+y){}^{2}=x{}^{2}+y{}^{2}+2xy

\sf (x+y){}^{2}=13+2×6

\sf (x+y){}^{2}=25

\sf x+y=\sqrt{25}

\sf x+y=5

Similar questions