If :-
x^2 +y^2 =25
x×y = 12
then find the value of X
Answers
Only positive values are taken
Answer:
4
Explanation:
x^2 + y^2 = 25
Add 2xy both sides :
⇒ x^2 + y^2 + 2xy = 25 + 2xy
⇒ ( x + y )^2 = 25 + 2(12) = 25 + 24
⇒ ( x + y )^2 = 49
⇒ x + y = 7 ...( 1 )
Add - 2xy both sides of x^2 + y^2:
⇒ x^2 + y^2 - 2xy = 25 - 2xy
⇒ ( x - y )^2 = 25 - 2( 12 ) = 25 - 24
⇒ x - y = 1 ...( 2 )
adding ( 1 ) and ( 2 ):
⇒ ( x + y ) + ( x - y ) = 7 + 1
⇒ 2x = 8
⇒ x = 4
Hence the required value of x is 4.
GIVEN:
- x² + y² = 25
- xy = 12
TO FIND:
- x = ?
SOLUTION:
We know that
a² + b² = ( a + b )² - 2ab
Similarly
→ x² + y² = ( x + y )² - 2xy
→ 25 + 2( 12 ) = ( x + y )²
→ 25 + 24 = ( x + y )²
→ x + y = √49
→ x + y = 7 ---------( 1 )
______________________________
x² + y² = 25
Adding ( - 2xy ) on both sides to equation 1
→ x² + y² - 2xy = 25 - 2xy
→ ( x - y )² = 1
→ x - y = 1 ---------- ( 2 )
Adding both the equations
→ x + y + x - y = 7 + 1
→ 2x = 8
→ x = 8/2
→ x = 4
Hence, x = 4