if x^2+y^2=4 find max of x^3+y^3/x+y
Answers
Answered by
0
Let t=xy
substituting x from (i)
t=(4+2y)y
t=2y
2
+4y
At minimum value of t
dy
dt
=0
dy
d
(2y
2
+4y)=0
⇒4y+4=0
⇒y=−1
⇒t=(4+2y)y
⇒t=(4−2)(−1)=−2
So minimum value is −2
Similar questions