If x^2 + y^2 + 4x + 4y + 8 = 0, then (x + y) is equal to
Answers
Answered by
1
- Answer:
- here is your answer
According to the question:
According to the question:x^2+y^2+4x+4y+8=0
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]=)x+2=0 and y+2=0
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]=)x+2=0 and y+2=0=)x= -2 and y= -2
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]=)x+2=0 and y+2=0=)x= -2 and y= -2Therefore, x+y = (-2)+ (-2)
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]=)x+2=0 and y+2=0=)x= -2 and y= -2Therefore, x+y = (-2)+ (-2)=-2–2
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]=)x+2=0 and y+2=0=)x= -2 and y= -2Therefore, x+y = (-2)+ (-2)=-2–2=-4
According to the question:x^2+y^2+4x+4y+8=0=) x^2+y^2+4x+4y+4+4=0=)(x^2+4x+4)+(y^2+4y+4)=0=){(x^2)+4x+(2^2)}+{(y^2+4y+(2^2)}=0=)(x+2)^2+(y+2)^2=0 [because a^2+2ab+b^2 =(a+b)^2]=)(x+2)^2=0 and (y+2)^2=0 [because square of any number is greater than or equal to zero]=)x+2=0 and y+2=0=)x= -2 and y= -2Therefore, x+y = (-2)+ (-2)=-2–2=-4Therefore, x+y= -4
Answered by
0
Answer:
2x or 2y
Step-by-step explanation:
(x+2)^2+(y+2)^2=0
(x+2)^2=(y+2)^2
x+2=y+2
x=y
x+y=x+x or y+y=2x or 2y
Similar questions