if X^2+y^2=55 and xy=3 , find the if value of x-y
Answers
Answer:
x-y =. 7
Step-by-step explanation:
x²+y²-2xy = 55-6
(x-y)²=49
x-y=7
Given :
x² + y² = 55
xy = 3
To find : x-y.
Identity to use : (a-b)² = a² - 2ab + b²
Where a = x and b = y.
substituting the values,
(x-y)² = (x)² - [2×(x)×(y)] + (y)²
by rearranging,
(x-y)² = (x)² + (y)² - [2×(x)×(y)]
(x-y)² = x² + y² -2xy
as we know x² + y² = 55 and xy = 3, by substituting the values,
(x-y)² = 55 - 2(3)
(x-y)² = 55 - 6
(x-y)² = 49
(x-y) = √49 [by transposing the power]
(x-y) = 7
Verification :
substituting (x-y) for 7,
(x-y)² = x² + y² - 2xy
(7)² = 55 - 6
49 = 55 - 6
LHS = RHS
Hence verified
Some more identities :
(a+b)² = a² + 2ab + b²
a²-b² = (a+b)(a-b)
(x+a)(x+b) = x² + x(a+b) + (ab)
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
(a+b)³ = a³ + 3a²b + 3ab² + b³
(a-b)³ = a³ - 3a²b + 3ab² - b³
a³+b³ = (a+b)(a²-ab+b²)
a³-b³ = (a-b)(a²+ab+b²)
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
Conditional identity:
if a+b+c = 0,
a³+b³+c³ = 3abc