Math, asked by rishita505, 1 year ago

if (x^2+y^2)(a^2+b^2)=(ax+by)^2. Prove that x/a=y/b

Answers

Answered by abhijeetsingh47
34
prove that this question
Attachments:

SUJALBATRA2003: hy rishuta
SUJALBATRA2003: rishita
SUJALBATRA2003: will u be my frnd
vyomgupta: hii
Answered by harendrachoubay
40

\dfrac{x}{a}=\dfrac{y}{b}, proved.

Step-by-step explanation:

We have,

(x^2+y^2)(a^2+b^2)=(ax+by)^2

Prove that, \dfrac{x}{a}=\dfrac{y}{b}.

(x^2+y^2)(a^2+b^2)=(ax+by)^2

x^2(a^2+b^2)+y^2(a^2+b^2)=(ax)^2+(by)^{2} +2(ax)(by)

Using algebraic identity,

(x+y)^{2}=x^{2}+y^{2}+2xy

x^2a^2+x^2b^2+y^2a^2+y^2b^2=a^2x^2+b^2y^{2} +2abxy

x^2b^2+y^2a^2=2abxy

x^2b^2+y^2a^2-2abxy=0

(xb)^2+(ya)^2-2(xb)(ya)=0

Using algebraic identity,

(x-y)^{2}=x^{2}+y^{2}-2xy

(xb-ya)^2=0

⇒ xb - ya = 0

⇒ xb = ya

\dfrac{x}{a}=\dfrac{y}{b}, proved.

Hence, \dfrac{x}{a}=\dfrac{y}{b}, proved.

Similar questions