If (X^2 +Y^2)/XY = 170/13 and x = 3, then y = ?
A. 24
B. 27
C. 39
D. 51
E. 219
Answers
from given we know
(x^2+y^2)/xy = 170/13
and
x=3
substituting x = 3 in given equation
(9+y^2)/3y = 170/13
13y^2-510 y +117=0
y={510+or - √(260100-6084)}/26
y={510+ or - √254016}/26
y={510 + or - 504}/26
y=(510-504)/26 or (510+504)/26
y=6/26 or 1014/26
y=6/26 or 39
therefore the value of y=39
Answer:
If a and b are the roots of the equation x^2 +x+2=0, then ( a^10 + b^10) / [a^-10 + b^-10)
A 4096
B. 2048
C. 1024
D. 512
E. 256
\huge\underline{\underline{\texttt{{Solution:}}}}
Solution:
Option C. 1024
\huge\underline{\underline{\texttt{{Explanation:}}}}
Explanation:
According to the question
Here α and β are the roots of the equation,
⇒ x² + x + 2 = 0.
Therefore,
⇒α + β = -1/1
or,
⇒ α + β = -b/a.
⇒ α + β = -1.
Products of zeroes of quadratic equation,
⇒ αβ = c/a.
⇒ αβ = 2.
Now,
We have to find the value of
(α¹⁰+β¹⁰)/{α^(-10)+β^(-10)}
=(α¹⁰+β¹⁰)/(1/α¹⁰ +1/β¹⁰)
={(α¹⁰+β¹⁰)/(α¹⁰+β¹⁰)}×(αβ)¹⁰
=(αβ)¹⁰
=(2)¹⁰
=1024
Hence, option C is correct
━━━━━━━━━━━━━━━━━━━━
this is answer for your upper question.