Math, asked by tshivansh101, 4 months ago

if x^2+y^2+z^2=40 and xy+yz+zx=30, find x+y+z​

Answers

Answered by SuitableBoy
39

{\huge{\rm{\underline{\underline{Answer\checkmark}}}}}

 \\

\rm{Given→} \begin{cases}\sf{x^2 + y^2 + z^2=40}\\ \sf{xy+yz+zx=30}\end{cases}

 \\

{\underline{\bold{\large{\bf{\it{To\;Find:-}}}}}} \rm{\rightarrow\; x+y+z}

 \\

Solution :

Squaring x+y+z

 \mapsto \rm \:  {(x + y + z)}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(xy + yz + zx) \\

We have the values of -

  • x² + y² + z² = 40
  • xy + yz + zx = 30

so , put these values ..

 \mapsto \rm \:  {(x + y + z)}^{2}  = 40 + 2(30)

 \mapsto \rm \:  {(x + y + z)}^{2}  = 40 + 60

 \mapsto \rm \:  {(x + y + z)}^{2}  = 100

Take square root both sides

 \mapsto \rm \:  \sqrt{ {(x + y + z)}^{2} }  =  \sqrt{100}

 \mapsto \underline{ \boxed{ \sf{ \pink{x + y + z = 10}}}}

So ,

The Final Answer is 10 .

 \\

_________________________

 \\

Some Important Formulas :

• (a+b)² = a² + b² + 2ab

• (a-b)² = a² + b² - 2ab

• (-a+b)² = a² + b² - 2ab

• (a+b+c)² = a² + b² + c² + 2( ab + bc + ac )

• (a-b-c)² = a² + b² + c² + 2(-ab + bc - ac)

• (a+b)³ = a³ + b³ + 3ab(a+b)

• (a-b)³ = a³ - b³ - 3ab(a-b)

Answered by rimimandal697
3

Answer:

Answer :

Given by : x^2+y^2+z^2=40,. XY+yz+zx =30

(x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx

=(x^2+y^2+z^2)+2(XY+yz+zx)

= 40+2×30

=100

x+y+z=100= 10

Similar questions