if x^2+y^2+z^2=40 and xy+yz+zx=30, find x+y+z
Answers
Answered by
39
Solution :–
Squaring x+y+z
We have the values of -
- x² + y² + z² = 40
- xy + yz + zx = 30
so , put these values ..
Take square root both sides
So ,
The Final Answer is 10 .
_________________________
★ Some Important Formulas :–
• (a+b)² = a² + b² + 2ab
• (a-b)² = a² + b² - 2ab
• (-a+b)² = a² + b² - 2ab
• (a+b+c)² = a² + b² + c² + 2( ab + bc + ac )
• (a-b-c)² = a² + b² + c² + 2(-ab + bc - ac)
• (a+b)³ = a³ + b³ + 3ab(a+b)
• (a-b)³ = a³ - b³ - 3ab(a-b)
Answered by
3
Answer:
Answer :
Given by : x^2+y^2+z^2=40,. XY+yz+zx =30
(x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx
=(x^2+y^2+z^2)+2(XY+yz+zx)
= 40+2×30
=100
x+y+z=√100= 10
Similar questions