Math, asked by shubhamspidey, 9 months ago

If x^2+y^2+z^2-xy-yz-zx=0 find the value of 2x + y:3x+4y​


shubhamspidey: plz fast

Answers

Answered by shantamazumder29
0

answer 3:7

Step-by-step explanation:

x^2+y^2+z^2-xy-yz-zx=0

or,2x^2+2y^2+2z^2-2xy-2yz-2zx=0

or,x^2+y^2-2xy+y^2+z^2-2yz+z^2+x^2-2zx=0

or,(x-y)^2+(y-z)^2+(z-x)^2=0

so x-y=0,y-z=0,z-x=0

therefore x=y,y=z,z=x

so x=y=z=k(,say)

now,(2x+y):(3x+4y)=(2k+k):(3k+4k)

=3k:7k

=3:7

Answered by chaitragouda8296
0

Given :

 {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx = 0 \:  \:  \:  \:  \:  \:  \:  \:  -  -  - (1)

To find :

2x + y</u><u> </u><u>:</u><u> </u><u>3x + 4y = </u><u>?</u><u> </u><u>

Solution :

Multiply both side of equation ( 1 ) by 2 .

2( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx) = 2 \times 0 \\  \\ 2 {x}^{2}  + 2 {y}^{2}  + 2 {z}^{2}  - 2xy - 2yz - 2zx = 0

By rearranging the terms :

( {x}^{2}  +  {y}^{2}  - 2xy) + ( {y}^{2}  +  {z}^{2}  - 2yz) + ( {x}^{2}  +  {z}^{2}  - 2zx) = 0

By using identity ;

 {a}^{2}  +  {b}^{2}  -2ab ={ (a - b )}^{2}

We get ,,,,

 {(x - y)}^{2}  +  {(y - z)}^{2}  +  {(x - z)}^{2}  = 0 \\  \\  =  =  &gt;  \:  \:  \:  \:  \:  {(x - y)}^{2}  = 0 \\  \:  \:x - y =  \sqrt{0}  \\  \:  \: x - y = 0  \\  \:  \: x = y

 {lll}^{ly} .....x = z \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: y = z

==> x = y = z

Let x = y = z = k where k is any real number

2x + y</strong><strong>:</strong><strong>3x + 4y =  \frac{2x + y}{3x + 4y}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{2k + k}{3k + 4k}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{3k}{7k}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{3}{7}

2x + y : 3x + 4y = 3 : 7

Hope it's helpful .....

Please mark it as Brainliest .....

Similar questions