Math, asked by chandavedic, 2 days ago

If x^2+y^2+z^2-xy-yz-zx=0, prove that x = y = z = 0​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

 {x}^{2} +  {y}^{2} +  {z}^{2}  - xy - yz - zx = 0 \\

Multiply both sides by 2, we get

2{x}^{2} +  2{y}^{2} +  2{z}^{2}  - 2xy - 2yz - 2zx = 0 \\

{x}^{2} + {x}^{2} + {y}^{2}  + {y}^{2} +  {z}^{2}  + {z}^{2}  - 2xy - 2yz - 2zx = 0 \\

can be re-arranged as

( {x}^{2} +  {y}^{2} - 2xy) + ( {y}^{2} +  {z}^{2} - 2yz) + ( {z}^{2} +  {x}^{2}  - 2zx) = 0 \\

\rm \:  {(x - y)}^{2} +  {(y - z)}^{2} +  {(z - x)}^{2} = 0 \\

We know, Sum of squares is 0 only, if term itself is 0.

\red{\rm\implies \:x - y = 0 \:  \:  \: and \:  \: y - z = 0 \:  \: and \:  \: z - x = 0} \\

\red{\rm\implies \:x = y \:  \:  \: and \:  \: y  =  z \:  \: and \:  \: z  =  x} \\

\red{\rm\implies \:x = y  = z} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions