If x=2, y = 3,z=-1, find the value of x3+y3+z3+3xyz
Answers
Answered by
1
Answer:
Given:
x² + y² + z² = 83
And
x + y + z = 15
To Find :
The value of , x³ + y³ + z³ - 3 x y z
Solution :
∵ ( x + y + z )² = x² + y² + z² + 2 ( x y + y z + z x )
And
x + y + z = 15
So, 83 + 2 ( x y + y z + z x ) = ( 15 )²
Or, 2 ( x y + y z + z x ) = 225 - 83
Or, 2 ( x y + y z + z x ) = 142
∴ ( x y + y z + z x ) = \dfrac{142}{2}
2
142
i.e ( x y + y z + z x ) = 71
Again:
∵ x³ + y³ + z³ - 3 x y z = ( x + y + z ) [ ( x² + y² + z² ) - ( x y + y z + z x ) ]
Or, = ( 15 ) × [ 83 - 71 ]
Or, = 15 × 12
i.e = 180
Hence, The value of x³ + y³ + z³ - 3 x y z is 180 . Answer
Step-by-step explanation:
Hope it helps you..
Thanksgiving..
Answered by
0
Answer:
= (2)3 + (3)3 + (1)3 + 3 *2*3*1
= 6 + 9 + 3 + 18
= 18 + 18
= 36
hope it helps you
Similar questions