English, asked by aasthagarg2520, 8 months ago

If x 2+y2=18xy then prove that 2log(x-y) =4log2+logx+log y

Answers

Answered by 170234vaanya
1

Answer:

If x 2+y2=18xy then prove that 2log(x-y) =4log2+logx+log y

Explanation:

Answered by Mysterioushine
12

Correct Question :

If x² + y² = 18xy then prove that ,

 \rm \: 2 log(x - y) =  4 log(2 )+  log(x) +  log(y)

Given :

  • x² + y² = 18xy

To Prove :

  •  \rm \: 2 log(x - y) =  4 log(2) +  log(x) +  log(y)

Solution :

Let ,

  • x² + y² = 18xy\longriggtarroweq(1)

We have ,

  • \rm \: 2 log(x - y) =  4 log2 +  logx +  logy

Consiser the LHS part ,

 \rm \: 2 log(x - y)  \\  \\  {\boxed{ \rm{ log(a {}^{m})  = m log(a) }}} \\  \\    : \implies \rm 2 log(x - y)  =  log {(x - y)}^{2}  \\   \\  \boxed {\rm{ (a - b) {}^{2}  =  {a}^{2}  +  {b}^{2} - 2ab  }} \\ \\  :   \implies \rm \:  log( {x}^{2} +  {y}^{2}  - 2xy )

From eq(1) ,

  : \implies \rm  log(18xy - 2xy)  \\  \\   : \implies \rm \:  log(16xy)  \\  \\  \boxed {\rm{  log(ab)  = log(a) +  log(b)  }} \\  \\    : \implies \rm \:  log(16)  +  log(x)  +  log(y)  \\  \\  :  \implies \rm  log( {2}^{4} )  +  log(x)  +  log(y)  \\  \\  :  \implies \rm \: 4 log(2)  +  log(x)  +  log(y)  \\  \\  :  \implies \rm \: RHS

⠀⠀⠀⠀⠀⠀⠀⠀HENCE PROVED

Similar questions