Math, asked by arth18, 4 months ago

If x=233 + 88√7 then what will be the value of x power 1/4 - 3x power -1/4

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{x=233+88\sqrt{7}}

\textbf{To find:}

\textsf{The value of}\;\mathsf{x^\frac{1}{4}-3\,x^\frac{-1}{4}}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{x=233+88\sqrt{7}}

\mathsf{x=121+112+88\sqrt{7}}

\mathsf{x=11^2+(4\sqrt{7})+2(11)(4\sqrt{7})}

\mathsf{x=(11+4\sqrt{7})^2}

\mathsf{x=(4+7+4\sqrt{7})^2}

\mathsf{x=(2^2+\sqrt{7}^2+2(2)(\sqrt{7}))^2}

\mathsf{x=((2+\sqrt{7})^2)^2}

\mathsf{x=(2+\sqrt{7})^4}

\implies\mathsf{x^\frac{1}{4}=2+\sqrt{7}}

\mathsf{\dfrac{1}{x^\frac{1}{4}}=\dfrac{1}{2+\sqrt{7}}{\times}\dfrac{2-\sqrt{7}}{2-\sqrt{7}}}

\mathsf{\dfrac{1}{x^\frac{1}{4}}=\dfrac{2-\sqrt{7}}{2^2-\sqrt{7}^2}}

\mathsf{\dfrac{1}{x^\frac{1}{4}}=\dfrac{2-\sqrt{7}}{4-7}}

\mathsf{\dfrac{1}{x^\frac{1}{4}}=\dfrac{2-\sqrt{7}}{-3}}

\mathsf{\dfrac{1}{x^\frac{1}{4}}=\dfrac{\sqrt{7}-2}{3}}

\mathsf{Now,}

\mathsf{x^\frac{1}{4}-3\,x^\frac{-1}{4}}

\mathsf{=x^\frac{1}{4}-3\left(\dfrac{1}{x^\frac{1}{4}}\right)}

\mathsf{=2+\sqrt{7}-3\left(\dfrac{\sqrt{7}-2}{3}\right)}

\mathsf{=2+\sqrt{7}-(\sqrt{7}-2)}

\mathsf{=2+\sqrt{7}-\sqrt{7}+2}

\mathsf{=4}

\implies\boxed{\mathsf{x^\frac{1}{4}-3\,x^\frac{-1}{4}=4}}

\textbf{Find more:}

If x=√5+1÷√5-1 and y=√5-1÷√5+1 find the value of x^2+ xy +y^2

https://brainly.in/question/3728106

if x =root 5 minus root 2 upon root 5 + root 2 and Y is equal to root 5 + root 2 upon root 5 minus root 2 find the value of x square + xy + Y square

https://brainly.in/question/3901417

Answered by 1909030985
1

Step-by-step explanation:

x = 233 + 88sqrt(7)

To find:

The value of x ^ (1/4) - 3x ^ (- 1/4)

Solution:

Consider,

x = 233 + 88sqrt(7)

x = 121 + 112 + 88sqrt(7)

x = 11 ^ 2 + (4sqrt(7)) + 2(11)(4sqrt(7))

x = (11 + 4sqrt(7)) ^ 2

x = (4 + 7 + 4sqrt(7)) ^ 2

x = (2 ^ 2 + sqrt^2 7 + 2(2)(sqrt(7))) ^ 2

x = ((2 + sqrt(7)) ^ 2) ^ 2

x = (2 + sqrt(7)) ^ 4

x₁ = 2 + √7

Attachments:
Similar questions