Math, asked by samszy2490, 6 months ago

If x=√28+5√12 and y=√37+10√12, What I'd the value of (x-y/(x+y)

Answers

Answered by gopalpvr
0

Step-by-step explanation:

x=√28+5√12

y=√37+10√12

x + y =√28+5√12 +(√37+10√12)

=√28+15√12 + √37

x-y =√28+5√12-(√37+10√12)

=√28-5√12-√37

so x-y/(x+y) =(√28-5√12-√37)/ (√28+15√12+√37)

Answered by hukam0685
0

Step-by-step explanation:

Given:If

x = \sqrt{28 + 5\sqrt{12} } \: \: and \: \: y = \sqrt{ 37 + 10\sqrt{12} }\\

To find: Find the value of

 \frac{x - y}{x + y}  \\

Solution:

Tip: Convert the terms under square root into complete whole square.

Step 1: Convert x in complete square

Rearrange the terms

 x = \sqrt{28 + 5 \sqrt{12} }  \\

or

 x=\sqrt{28 + 5 \sqrt{4 \times 3} } \\

or

 x=\sqrt{28 + 2\times  5\sqrt{3} }  \\

or

 x=\sqrt{( {5)}^{2} + 2 \times 5 \sqrt{3}  + ( { \sqrt{3}) }^{2}  }  \\

because

 {a}^{2}  + 2ab +  {b}^{2}  = ( {a + b)}^{2}  \\

or

 x=\sqrt{( {5 +  \sqrt{3} )}^{2} }  \\

or

\bold{\red{x = 5 +  \sqrt{3}}}  \\

Step 2: Convert y into complete square

y = \sqrt{ 37 + 10 \sqrt{12}  } \\

or

y =  \sqrt{37 + 2 \times 5 \sqrt{12} }  \\

or

y =  \sqrt{( {5)}^{2}  + 2 \times 5 \sqrt{12} + ( { \sqrt{12} )}^{2}  }  \\

or

y =  \sqrt{( {5 +  \sqrt{12}) }^{2} }  \\

or

\bold{\green{y = 5 +  \sqrt{12} }} \\

Step 3: Put value of x and y

 \frac{x - y}{x + y}  \\

 \frac{x - y}{x + y}=\frac{5 +  \sqrt{3}  - 5 -  \sqrt{12} }{5 +  \sqrt{3}  + 5 +  \sqrt{12} }  \\

or

 \frac{x - y}{x + y}=\frac{ \sqrt{3}  -  \sqrt{12} }{10 +  \sqrt{3}  +  \sqrt{12} }  \\

or

\frac{x - y}{x + y}=\frac{ \sqrt{3}  - 2 \sqrt{3} }{10 +  \sqrt{3}  + 2 \sqrt{3} }  \\

or

  \frac{x - y}{x + y} =  \frac{ -  \sqrt{3} }{10 + 3 \sqrt{3} }  \\

Step 4: Rationalize the denominator

 \frac{x - y}{x + y}  =  \frac{ -  \sqrt{3} }{10 + 3 \sqrt{3} }  \times  \frac{10 - 3 \sqrt{3} }{10 - 3 \sqrt{3} }  \\

apply identity a²-b²=(a+b)(a-b) in the denominator

 \frac{x - y}{x + y}  =  \frac{ - 10 \sqrt{3} + 9 }{( {10)}^{2} - ( {3 \sqrt{3}) }^{2}  }  \\

or

\frac{x - y}{x + y}  =  \frac{ - 10 \sqrt{3} + 9 }{100 - 27  }  \\

or

\frac{x - y}{x + y}  =  \frac{9 - 10 \sqrt{3}  }{73  }  \\

Final answer:

\bold{\pink{\frac{x - y}{x + y}  =  \frac{9 - 10 \sqrt{3}  }{73  }}}  \\

Hope it helps you.

To learn more on brainly:

rationalize the denominator 1/(1+√5+√3)

https://brainly.in/question/4122211

rationalize the denominator of 2/3√3

https://brainly.in/question/4368349

Similar questions