Math, asked by TanishaDasila, 1 year ago

If x=√2a+1+√2a-1/√2a+1-√2a-1,then prove that x^2-4ax+1=0.

Plz....Plz....Please answer it....Plz....

Attachments:

Answers

Answered by Shubhendu8898
48
find this solution............
Attachments:

TanishaDasila: Thanx
Shubhendu8898: ur welcome
Answered by sk940178
60

x² - 4ax + 1 = 0 (Proved)

Step-by-step explanation:

We are given that, x = \frac{\sqrt{2a + 1} + \sqrt{2a - 1}  }{\sqrt{2a + 1} - \sqrt{2a - 1}} and we have to prove that x² - 4ax + 1 = 0.

Now, x = \frac{\sqrt{2a + 1} + \sqrt{2a - 1}  }{\sqrt{2a + 1} - \sqrt{2a - 1}}

Rationalizing the denominator we get,

x = \frac{(\sqrt{2a + 1} + \sqrt{2a - 1})^{2}}{2a + 1 - 2a + 1}

x = \frac{2a + 1 + 2a - 1 + 2 \sqrt{(2a + 1)(2a - 1)}}{2}

x = 2a + \sqrt{4a^{2} - 1}

x - 2a = \sqrt{4a^{2} - 1}

Now, squaring both sides we get,

x² - 4ax + 4a² = 4a² - 1

⇒ x² - 4ax + 1 = 0 (Proved)

Similar questions