Math, asked by RajThakur6606, 10 months ago

If (x+2a) is a factor of x^5 -4a ^2x^3 +2x + 2a + 3, find a?

Answers

Answered by Anonymous
40

Given:

\sf\ Factor :- x^5 - 4a^2x^3 +2x + 2a + 3

To Find:

Value of a.

Solution:

\dashrightarrow\: \sf\ f(x) = x^5 -4a^2x^3 +2x + 2a + 3

\dashrightarrow\: \sf\ x+2a = 0

\dashrightarrow\: \sf\ x = -2a

Put this solution in given equation.

\dashrightarrow\: \sf\ f(-2a)=(-2a)^5 - 4a^2(-2a)^3 +2(-2a) + 2a + 3

\dashrightarrow\: \sf\ -32a^5 +32a^5-4a^2a+3

\dashrightarrow\: \sf\ -2a+3=0

\dashrightarrow\: \sf\ -2a=3

\dashrightarrow\: \underline{\boxed{\bf{\orange{a=\frac{3}{2}.}}}}

\rule{160}3

\large\underline\bold{Additional\: Information}

  • Factor are the numbers you can multiply together to get another number.
  • It is very easy to get because we need to find the number by which it is completely divisible.

\rule{160}3


Anonymous: Awesome ❤
Answered by Anonymous
58

Given :

\sf{ f(x)\: =\: x^5 - 4a^2 x^3 + 2x + 2a + 3}

To find :

  • Value of a .

Solution :

\sf{ f(x)\: =\: x^5 - 4a^2 x^3 + 2x + 2a + 3}

\sf{x + 2a = 0}

\sf{x = -2a}

 \textbf{\small{\green{Putting\: the\: value\: of\: x\: in\: f(x) :}} }

➠ f(-2a) = (-2a)⁵ - 4a²(-2a)³ + 2(-2a) + 2a + 3

➠ -32a⁵ + 32a⁵ - 4a²a + 3

➠ -2a + 3 = 0

➠ -2a = 3

\boxed{\underline{\sf{\red{a =\: \frac{3}{2}}}}}

___________________


Anonymous: Nice :)
Similar questions