if x/2a + x/2b is 2 find value of x
Answers
Answer:
x+2a)/(x-2a) + (x+2b)/(x-2b)=2
Step-by-step explanation
Given
x=4ab/a+b
We need to find for x+2a/x-2a + x+2b/x-2b
Follow the below steps to find the solution.
Step 1:
x=4ab / a+ b
Simplify as
=>x=2a x 2b / a + b
=>x/2a=2b / a + b
By componendo dividend,
(x+2a)/(x-2a)=(2b+a+b)/(2b-a-b)
Simplify RHS.
(x+2a)/(x-2a)=(a+3b)/(b-a)
Step 2:
Similarly (x+2b)/(x-2b)=(3a+b)/(a- b)
Now we know:
(x+2a) / (x-2a) + (x+2b)/(x-2b)
=(a+3b)/(b-a) + (3a+b)/(a- b)
=(a+3b)/(b-a) - (3a+b)/(a- b)
=a+3b-3a-b/b-a
=2b-2a/b-a
=2(b-a)/b-a
=2
Finally we get, (x+2a)/(x-2a) + (x+2b)/(x-2b)=2
Step-by-step explanation:
Answer:
x+2a)/(x-2a) + (x+2b)/(x-2b)=2
Step-by-step explanation
Given
x=4ab/a+b
We need to find for x+2a/x-2a + x+2b/x-2b
Follow the below steps to find the solution.
Step 1:
x=4ab / a+ b
Simplify as
=>x=2a x 2b / a + b
=>x/2a=2b / a + b
By componendo dividend,
(x+2a)/(x-2a)=(2b+a+b)/(2b-a-b)
Simplify RHS.
(x+2a)/(x-2a)=(a+3b)/(b-a)
Step 2:
Similarly (x+2b)/(x-2b)=(3a+b)/(a- b)
Now we know:
(x+2a) / (x-2a) + (x+2b)/(x-2b)
=(a+3b)/(b-a) + (3a+b)/(a- b)
=(a+3b)/(b-a) - (3a+b)/(a- b)
=a+3b-3a-b/b-a
=2b-2a/b-a
=2(b-a)/b-a
=2
Finally we get, (x+2a)/(x-2a) + (x+2b)/(x-2b)=2