Math, asked by JennyBarrett7, 5 months ago

If (x – 2k) is a factor of f(x), which of the following must be true? f(2k) = 0 f(–2k) = 0 A root of f(x) is x = –2k. A y intercept of f(x) is x = 2k.

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{(x-2k) is a factor of f(x)}

\underline{\textbf{To find:}}

\textsf{Which of the following is true}

\mathsf{(i)\;f(2k)=0}

\mathsf{(ii)\;f(-2k)=0}

\mathsf{(iii)\;A\;root\;of\;f(x)\;is\;x=-2k}

\mathsf{(iv)\;y\;intercept\;of\;f(x)\;is\;x=2k}

\underline{\textbf{Solution:}}

\underline{\textbf{Factor used:}}

\boxed{\textbf{(x-a) is a factor of P(x) iff P(a)=0}}

\textsf{As per given data,}

\textsf{(x-2k) is a factor of f(x)}

\textsf{By factor theorem,}

\mathsf{f(2k)=0}

\underline{\textbf{Answer:}}

\mathsf{f(2k)=0}

\underline{\textbf{Find more:}}

Verify whether (x + 1), (x – 2) and (x + 3) are the factors of the polynomial x3 + 2x2– 5x – 6 without actual

division. with the explanation

https://brainly.in/question/41124775  

Similar questions