If x=2root 3+ 2 root 2 find x+1/x
Answers
Answer:
(x+1/x) = (9√3 + 7√2)/4
Step-by-step explanation:
Since x = 2√3 + 2√2
Therefore,
1 / x = 1 / 2√3 + 2√2
Rationalizing it we get
= 1 / 2√3 + 2√2 * 2√3 - 2√2 / 2√3 - 2√2
= 2√3 - 2√2 / 4
We take 2 common from the numerator Therefore
= 2(√3 - √2) / 4
= √3 - √2 / 2
Now,
(x + 1/x) = 2√3 + 2√2 + (√3-√2 / 4)
Taking LCM as 4
We get
(8√3 + 8√2 + √3 - √2)/4
Therefore
(9√3 + 7√2)/4
Answer:
(x+1/x)= 5√3+3√2/2
Step-by-step explanation:
Since,
x = 2√3 + 2√2
1 / x = 1 / 2√3 + 2√2
On rationalizing the denominator, we get
= 1 / 2√3 + 2√2 * 2√3 - 2√2 / 2√3 - 2√2
= 2√3 - 2√2 / 4
On taking 2 common from the numerator we get,
= 2(√3 - √2) / 4
= √3 - √2 / 2
Now,
(x + 1/x) =
(2√3 + 2√2) + (√3-√2 / 2)
Taking LCM as 2, we get
(4√3 + 4√2 + √3 - √2)/2
(4√3+√3+4√2-√2)/2
Thus, the answer is=
5√3+3√2/2