Math, asked by seematiwari7, 4 months ago

If x=2sin2Ɵ and y=2cos2Ɵ+1, then find x+y​

Answers

Answered by Anonymous
13

Given:-

  • x = 2 sin²θ
  • y = 2 cos²θ + 1

To find:-

  • x + y

Solution:-

According to the question

→ 2 sin²θ + 2 cos²θ + 1

→ 2 (sin²θ + cos²θ) + 1

  • Putting sin²θ + cos²θ = 1

→ 2 × 1 + 1

→ 2 + 1

3

Hence,

  • x + y = 3

Trigonometric Table:-

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Answered by Sen0rita
16

Given :

 \:  \:

  • x = 2sin²θ
  • y = 2cos²θ + 1

 \:

To Find :

 \:

  • Value of x + y

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀_______________

 \:

Put the values of x and y in the equation.

 \:  \:

\sf:\implies \: x + y = 2 {sin}^{2} \theta + 2 {cos}^{2} \theta + 1 \\  \\  \\ \sf:\implies \: x + y = 2( {sin}^{2} \theta + cos {}^{2} \theta) + 1 \\  \\  \\ \sf:\implies \: x + y = 2(1) + 1  \\    \\  \\ \sf  as  \: we\:know \:  that \left(  {sin}^{2}\theta +  {cos}^{2} \theta = 1 \right) \\  \\  \\ \sf:\implies \: x + y = 2 + 1 \\  \\  \\ \sf:\implies \: x + y = \underline{\boxed{\sf\purple{3}}}\bigstar \\  \\  \\  \\ \sf\therefore{\underline{Hence ,\: the \: value \: of \:( x \:  + y) \: is \:\bold{3} }}

 \:  \:

More to know :

 \:

  • 1 + tan²θ = sec²θ
  • 1 + cot²θ = cosec²θ
Similar questions