if x=2sina+5cosa and y=2cosa 5sina then prove x2+y2 =29
Answers
Answered by
1
Answer:
x=2sinA+5cosA, y=2cosA-5sinA
x²+y²=29
>(2sinA+5cosA)²+(2cosA-5sinA)²=29
>(2sinA)²+2(2sinA)(5-cosA)+(5cosA)²+(2cosA)²-2(2cosA)(5sinA)+(5sinA)²=29
>4sin²A+20sinAcosA+25cos²A+4cos²A-20sinAcosA+25sin²A=29
>4sin²A+4cos²A+25cos²A+25sin²A+20sinAcosA-20sinAcosA=29
>4(sin²A+cos²A)+25(cos²A+sin²A)=29
>4(1)+25(1)=29
>4+25=29
>29=29
LHS=RHS
Hence proved
Similar questions