if x + 2y= 3z, prove that x^3+8y^3-27z^3+18xyz=0
Answers
Answered by
6
Cubing on both sides
(x+2y)³ = 27 z³
x³ + 8y³ + 6xy(x+2y) = 27z³
But x+2y = 3z, replacing that, we get
x³ + 8y³ + 6xy(3z) = 27 z³
So, x³ + 8y³ - 27z³ + 18xyz = 0
(x+2y)³ = 27 z³
x³ + 8y³ + 6xy(x+2y) = 27z³
But x+2y = 3z, replacing that, we get
x³ + 8y³ + 6xy(3z) = 27 z³
So, x³ + 8y³ - 27z³ + 18xyz = 0
Answered by
2
Heya user☺☺
x + 2y -3z =0 .........eq(1)
so,
using identity we have...
x^3+8y^3-27z^3 = -18xyz
So,
x^3+8y^3-27z^3+18xyz=0
Q.E.D
HOPE THIS WILL HELP
x + 2y -3z =0 .........eq(1)
so,
using identity we have...
x^3+8y^3-27z^3 = -18xyz
So,
x^3+8y^3-27z^3+18xyz=0
Q.E.D
HOPE THIS WILL HELP
Similar questions