Math, asked by rekhananda2014, 11 months ago

if x+2y=5, then find the value of x^3+8y^3+30xy-125​

Answers

Answered by Rohit18Bhadauria
10

Answer:

0 is the correct answer.

Given

  • x+y = 5   --------------------------(1)

To Find:

  • \sf{x^{3}+8y^{3}+30xy-125}

Solution

We know that,

  • \bf{(a+b)^{3}=a^{3}+b^{3}+3ab(a+b)}

So,

On cubing equation (1), we get

\longrightarrow\sf{(x+y)^{3}={5}^{3}}

\longrightarrow\sf{x^{3}+(2y)^{3}+3(x)(2y)(x+2y)={125}}

\longrightarrow\sf{x^{3}+8y^{3}+6xy{\red{(x+2y)}}={125}}

Now after feeding values of equation (1), we get

\longrightarrow\sf{x^{3}+8y^{3}+6xy{\red{(5)}}={125}}

\longrightarrow\sf{x^{3}+8y^{3}+30xy={125}}

\longrightarrow\sf{x^{3}+8y^{3}+30xy-{125}=0}

Hence, value of \tt{\purple  {{x}^{3}+{8y}^3+30xy-125}} is \tt{\green{0}}.

Similar questions