If x-2y=8 and xy=6 find the value of x^3-8y^3
Answers
Answered by
19
x3 + 8y3
= x3 + (23)y3
= x3 + (2y)3
= [x+2y] [x2 - x(2y) + (2y)2] [Using: a3+b3 = (a+b)(a2-ab+b2)]
= 10 [x2 - 2xy + (2y)2] [Given: x+2y=10]
= 10 [x2 - (6xy-4xy) + (2y)2]
= 10 [x2 - 6xy + 4xy + (2y)2]
= 10 [(x2 + 4xy + (2y)2) - 6xy]
= 10 [ (x2 + 2*x(2y) + (2y)2) - 6xy ]
= 10 [ (x+2y)2 - 6xy ]
= 10 [102 - 6*15] [Given: x+2y=10 and xy=15]
= 10 [100 - 90]
= 10 * 10
= 100
= x3 + (23)y3
= x3 + (2y)3
= [x+2y] [x2 - x(2y) + (2y)2] [Using: a3+b3 = (a+b)(a2-ab+b2)]
= 10 [x2 - 2xy + (2y)2] [Given: x+2y=10]
= 10 [x2 - (6xy-4xy) + (2y)2]
= 10 [x2 - 6xy + 4xy + (2y)2]
= 10 [(x2 + 4xy + (2y)2) - 6xy]
= 10 [ (x2 + 2*x(2y) + (2y)2) - 6xy ]
= 10 [ (x+2y)2 - 6xy ]
= 10 [102 - 6*15] [Given: x+2y=10 and xy=15]
= 10 [100 - 90]
= 10 * 10
= 100
Answered by
9
Hope this ans helps u
x3 + 8y3
= x3 + (23)y3
= x3 + (2y)3
= [x+2y] [x2 - x(2y) + (2y)2] [Using: a3+b3 = (a+b)(a2-ab+b2)]
= 10 [x2 - 2xy + (2y)2] [Given: x+2y=10]
= 10 [x2 - (6xy-4xy) + (2y)2]
= 10 [x2 - 6xy + 4xy + (2y)2]
= 10 [(x2 + 4xy + (2y)2) - 6xy]
= 10 [ (x2 + 2*x(2y) + (2y)2) - 6xy ]
= 10 [ (x+2y)2 - 6xy ]
= 10 [102 - 6*15] [Given: x+2y=10 and xy=15]
= 10 [100 - 90]
= 10 * 10
= 1008
Similar questions