Math, asked by vinaysrivastav, 11 months ago

if x+2y=9 and xy=13, find the value of x sq. +. 4y sq.​

Answers

Answered by Brâiñlynêha
1

\huge\boxed{\red{\mathtt{Question}}}

Given :- x+2y=9

xy =13

To find \sf x{}^{2}+4y{}^{2}

\huge\mathbb{\underline{SOLUTION}}

\large\mathbb{\underline{\red{FORMULA\:USED}}}

\large\sf (a+b){}^{2} =a{}^{2}+b{}^{2}+2ab

\large\bf\underline{According \:to\: question}

\sf x{}^{2}+4y{}^{2}= (x+2y){}^{2}-4xy\\ \sf\implies  x{}^{2}+4y{}^{2}= x{}^{2}+4y{}^{2}+4xy-4xy\\ \sf\implies x{}^{2}+4y{}^{2}=x{}^{2}+4y{}^{2}\\ \sf\implies x{}^{2}+4y{}^{2}= (9){}^{2} -4×13\\ \sf\implies x{}^{2}+4y{}^{2}= 81- 52\\ \sf\implies x{}^{2}+4y{}^{2}=29

\large{\underline{\boxed{\red{\bf{x{}^{2}+4y{}^{2}=29}}}}}

\large\bf\underline{Some\: important\: formula}

\large\sf1)(a+b){}^{2}=a{}^{2}+b{}^{2}+2ab\\ \sf\large 2) (a-b){}^{2}=a{}^{2}+b{}^{2}-2ab\\ \sf\large 3) (a+b+c){}^{2}=a{}^{2}+b{}^{2}+c{}^{2}+2ab+2bc+2ca\\ \sf\large  4) (a-b){}^{3}=a{}^{3}+b{}^{3}+3ab(a+b)\\ \sf\large 5) (a-b){}^{3}=a{}^{3}-b{}^{3}-3ab(a+b)\\ \sf\large 6) a{}^{3}+b{}^{3}=(a+b)(a{}^{2}+b{}^{2}-ab)\\ \sf\large 7) a{}^{3}-b{}^{3}=(a-b)(a{}^{2}+b{}^{2}+ab)\\ \sf\large 8) a{}^{3}+b{}^{3}+c{}^{3}-3abc=(a+b+c)(a{}^{2}+b{}^{2}+c{}^{2}-ab-bc-ca)

Similar questions