Math, asked by ally8, 1 year ago

if x= √3+1 / √3-1 and y= √3-1 / √3+1 . Find the value of x square+y square+xy

Answers

Answered by ShuchiRecites
4
Hello Mate!

x =   \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1  }   \times  \frac{ \sqrt{3}  + 1}{ \sqrt{3} + 1 }  \\  \frac{ ({ \sqrt{3 }  + 1)}^{2} }{3 - 1}  =  \frac{4 + 2 \sqrt{3} }{2}  \\  = 2 +  \sqrt{3}

y =  \frac{ \sqrt{3}  - 1}{ \sqrt{3 }  + 1}  \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3} - 1 }  \\  =  \frac{ {( \sqrt{3} - 1) }^{2} }{3 - 1}  \\  =  \frac{4 - 2 \sqrt{3} }{2}  = 2 -  \sqrt{3}

 {x}^{2}  =  {(2 +   \sqrt{3} ) }^{2}  \\  = 4 + 3 + 2 \times 2 \times  \sqrt{3}  \\  = 7 + 4 \sqrt{3}
 {y}^{2}  =  {(2 -  \sqrt{3}) }^{2}  \\  = 4 + 3 - 2  \times 2 \times  \sqrt{3}  \\  = 7 - 4 \sqrt{3}
xy = (2 +  \sqrt{ 3 } )(2 -  \sqrt{3)}  \\  =  {2}^{2}  -  { \sqrt{3} }^{2}  \\  = 4 - 3 = 1

 {x}^{2}  +  {y}^{2}  + xy =  \\ 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  + 1 \\ 14 + 1 = 15

Hope it helps☺!
Answered by DaIncredible
4
Hey friend,
Here is the answer you were looking for:
x =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  + 1}  \\  \\ using \: the \: identity \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{( { \sqrt{3}) }^{2} +  {(1)}^{2} + 2( \sqrt{3}   )(1)}{ {( \sqrt{3}) }^{2}  -  {(1)}^{2} }  \\  \\  =  \frac{3 + 1 + 2 \sqrt{3} }{3 - 1}  \\  \\  =  \frac{4 + 2 \sqrt{3} }{2}  \\  \\  = 2 +  \sqrt{3}  \\  \\ y =  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1}  \\  \\ using \: the \: identity \\  {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2} \\  \\  =  \frac{ {( \sqrt{3}) }^{2} +  {(1)}^{2}  - 2( \sqrt{3})(1)  }{ {( \sqrt{3} )}^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\  =  \frac{ 4 - 2 \sqrt{3} }{2}  \\  \\  = 2 -  \sqrt{3}  \\  \\  {x}^{2}  +  {y}^{2}  + xy \\  \\  =  {(2 +  \sqrt{3} )}^{2}  +  {(2 -  \sqrt{3}) }^{2}  + (2 +  \sqrt{3} )(2 -  \sqrt{3} ) \\  \\ using \: same \: idenities \\  \\  = ( {(2)}^{2}  +  {( \sqrt{3} )}^{2}  + 2(2)( \sqrt{3} ))( {(2)}^{2}  +  {( \sqrt{3} )}^{2}  - 2(2)( \sqrt{3} )) + ( {(2)}^{2}  -  {( \sqrt{3}) }^{2} ) \\  \\  = (4 + 3 + 4 \sqrt{3} ) + (4 + 3 - 4 \sqrt{3} ) + (4 - 3) \\  \\  = 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  + 1 \\  \\  = 7 + 7 + 1 \\  \\  = 15


Hope this helps!!!

@Mahak24

Thanks...
☺☺
Similar questions