if x=√3+1/√3-1. y=√3-1/√3+1. find value of x2 +y2 + xy
Answers
Answered by
119
Answer :
Given that,
x = (√3 + 1)/(√3 - 1)
and y = (√3 - 1)/(√3 + 1)
So, x + y
= (√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)
= {(√3+1)(√3+1)+(√3-1)(√3-1)}/(√3-1)(√3+1)
= (3 + 2√3 + 1 + 3 - 2√3 + 1)/(3 - 1)
= 8/2
= 4
So, (x + y)²
= 4²
= 16
and xy
= (√3 + 1)/(√3 - 1) × (√3 - 1)/(√3 + 1)
= (3 - 1)/(3 - 1)
= 2/2
= 1
∴ x² + y² + xy
= (x + y)² - 2xy + xy
= (x + y)² - xy
= 16 - 1
= 15
#MarkAsBrainliest
Given that,
x = (√3 + 1)/(√3 - 1)
and y = (√3 - 1)/(√3 + 1)
So, x + y
= (√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)
= {(√3+1)(√3+1)+(√3-1)(√3-1)}/(√3-1)(√3+1)
= (3 + 2√3 + 1 + 3 - 2√3 + 1)/(3 - 1)
= 8/2
= 4
So, (x + y)²
= 4²
= 16
and xy
= (√3 + 1)/(√3 - 1) × (√3 - 1)/(√3 + 1)
= (3 - 1)/(3 - 1)
= 2/2
= 1
∴ x² + y² + xy
= (x + y)² - 2xy + xy
= (x + y)² - xy
= 16 - 1
= 15
#MarkAsBrainliest
Answered by
23
x=1/y
Therefore
xy=1
Rationalising x and y
x=2+root3, y=2-root3
x2=7+4root3,y2=7-4root3
Therefore
X2+y2+xy=14+1=15
This is required answer
Therefore
xy=1
Rationalising x and y
x=2+root3, y=2-root3
x2=7+4root3,y2=7-4root3
Therefore
X2+y2+xy=14+1=15
This is required answer
Similar questions