Math, asked by ncpkasomhung, 5 months ago

if x=√3-1/√3+1,y=√3+1/√3-1 find x²-xy+y​

Answers

Answered by Anonymous
118

♣ Qᴜᴇꜱᴛɪᴏɴ :

If x = \sf{\dfrac{\sqrt{3}-1}{\sqrt{3}+1}} , y = \sf{\dfrac{\sqrt{3}+1}{\sqrt{3}-1}}, find x²- xy + y

★═════════════════★  

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{3\left(3-\sqrt{3}\right)-1}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

x = \sf{\dfrac{\sqrt{3}-1}{\sqrt{3}+1}} , y = \sf{\dfrac{\sqrt{3}+1}{\sqrt{3}-1}}

x²- xy + y = \sf{\displaystyle\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^2-\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\cdot \frac{\sqrt{3}+1}{\sqrt{3}-1}\right)+\frac{\sqrt{3}+1}{\sqrt{3}-1}}

Solve :

\sf{\displaystyle\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^2-\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\cdot \frac{\sqrt{3}+1}{\sqrt{3}-1}\right)+\frac{\sqrt{3}+1}{\sqrt{3}-1}}

\sf{\displaystyle=\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^2-\frac{\sqrt{3}-1}{\sqrt{3}+1}\cdot \frac{\sqrt{3}+1}{\sqrt{3}-1}+\frac{\sqrt{3}+1}{\sqrt{3}-1}}

\sf{\boxed{\boxed{\begin{array}{l}\left(\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right)^{2}=\dfrac{2-\sqrt{3}}{2+\sqrt{3}} \\\\\\\dfrac{\sqrt{3}-1}{\sqrt{3}+1} \cdot \dfrac{\sqrt{3}+1}{\sqrt{3}-1}=1\end{array}}}}

\sf{\displaystyle=\frac{2-\sqrt{3}}{2+\sqrt{3}}-1+\frac{1+\sqrt{3}}{\sqrt{3}-1}}

\sf{\displaystyle=\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}-1}

\sf{=\dfrac{6\sqrt{3}}{1+\sqrt{3}}-1}

\large\boxed{\sf{=3\left(3-\sqrt{3}\right)-1}}

Similar questions