Math, asked by slokesh087, 2 months ago

if x =√3+1/√3-1 , y= √3-1 / √3 +1 , find x²+y²+xy ( cbse 2016)√ = underroot

Answers

Answered by lalnunkimahmarjoute
1

Step-by-step explanation:

For x,

x =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }

x =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  \times  \frac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

x =  \frac{ {( \sqrt{3} + 1) }^{2} }{3 - 1}

x = \frac{3 + 2 \sqrt{3} + 1 }{2}

x =  \frac{4 + 2 \sqrt{3} }{2}

x = 2 +  \sqrt{3}

For y,

y = \frac{ \sqrt{3 } - 1 }{ \sqrt{3} + 1 }

y =  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3}   -  1 }{ \sqrt{3}  -  1 }

y =  \frac{ {( \sqrt{3} - 1) }^{2} }{3 - 1}

y =  \frac{3 - 2 \sqrt{3} + 1 }{3 - 1}

y =  \frac{4  - 2 \sqrt{3}  }{2}

y = 2 -  \sqrt{3}

Then, x² + y² + xy will be

{(2 +  \sqrt{3}) }^{2}  +  {(2 -  \sqrt{3}) }^{2}  + (2 +  \sqrt{3})(2 -  \sqrt{3})

(4 + 2 \sqrt{3 }+ 3 )+ (4 - 2 \sqrt{3}  + 3) + (4 - 3)

7 + 2 \sqrt{3}  + 7 - 2 \sqrt{3}  + 1

14 + 1

15

Similar questions