If x=√3+1÷√3-1,y=√3-1÷√3+1 then find the value of x2+y2+xy
Answers
Answer:
x6+y6+xy(square)
Step-by-step explanation:
wait two mins i write on paper
Answer:
15
Step-by-step explanation:
We have,
x = (√3+1) ÷ (√3-1)
y = (√3-1) ÷ (√3+1)
TO Find - x^{2} + y^{2} + xy
= {(√3+1) ÷ (√3-1)}^{2} + (√3 - 1) ÷ (√3 + 1) + { (√3+1) ÷ (√3-1)} × {(√3-1) ÷ (√3+1)}
Formula
(a + b)^{2} = a^{2} + b^{2} + 2ab
So, x^{2} + y^{2} + xy = {(√3+1) ÷ (√3-1)}^{2} + (√3 - 1) ÷ (√3 + 1) + { (√3+1) ÷ (√3-1)} × {(√3-1) ÷ (√3+1)}
= {(3 + 1 + 2√3) ÷ (3 + 1 - 2√3)} + {(3 + 1 - 2√3) ÷ (3 + 1 + 2√3)} + 1
= {(4 + 2√3) ÷ (4 - 2√3)} + {(4 - 2√3) ÷ (4 + 2√3)} + 1
= {(2 + √3) ÷ (2 - √3)} + {(2 - √3) ÷ (2 + √3)} + 1
= [(2 + √3)^{2} + (2 - √3)^{2} + (2 + √3)(2 - √3)] ÷ [(2 + √3)(2 - √3)]
= [(4 + 3 + 4√3) + (4 + 3 - 4√3) + ( 4 - 3)] ÷ (4 - 3)
= [ (7 + 4√3) + (7 - 4√3) + 1 ] ÷ ( 1 )
= ( 14 + 1 )
= 15
Hence x^{2} + y^{2} + xy = 15