If x = 3^1/4 + 3^-1/4 and y = 3^1/4 – 3^-1/4, then the value of 3(x² + y^2)^2
will be
Answers
Answer:
value of 3(x²+y²)²=16
Explanation:
Given:-
x = 3^1/4 + 3^-1/4 and y = 3^1/4 – 3^-1/4,
To find:-
the value of 3(x² + y²)²
Solution:-
x=3^1/4 + 3^-1/4------(1)
y=3^1/4 - 3^-1/4------(2)
x+y=3^1/4 + 3^-1/4+3^1/4 - 3^-1/4
=>x+y=3^1/4+3^1/4
=>x+y=2(3^1/4) ------(3)
xy=(3^1/4+3^-1/4)(3^1/4-3^-1/4)
xy=[3^1/4]²-[3^-1/4]²
xy=3^2/4-3^-2/4
xy=3^1/2-3^-1/2----(4)
we know that (a+b)²=a²+2ab+b²
=>a²+b²=(a+b)²-2ab
=>x²+y²=(x+y)²-2xy
now from (3)&(4)
=>x²+y²=[2(3^1/4)]²-2[3^1/2-3^-1/2]
=>x²+y²=4(3^2/4)-2(3^1/2)-2(3^-1/2)
=>x²+y²=4(3^1/2)-2(3^1/2)-2(3^-1/2)
=>x²+y²=2(3^1/2-2(3^-1/2)
=>x²+y²=2[3^1/2-3^-1/2]
(x²+y²)²=[2(3^1/2-3^-1/2)]²
=>(x²+y²)²=4(3^2/2-2(3^1/2)(3^-1/2)+3^-2/2)
=>(x²+y²)²=4(3-2(1)+3^-1)
=>(x²+y²)²=4(3-2+1/3)
=>(x²+y²)²=4(1+1/3)
=>(x²+y²)²=4(4/3)
=>(x²+y²)²=16/3
Now value of 3(x²+y²)²
=>3(16/3)
=>16
Answer:-
value of 3(x²+y²)²=16
Used formulae:-
- (a+b)²=a²+2ab+b²
- (a-b)²=a²-2ab+b²
- a^-n=1/a^n
Answer:
64
Explanation:
x²=[3^(1/4)+3^(-1/4)]²
=3^(1/2)+3^(-1/2)+2
y²=[3^(1/4)-3^(-1/4)]²
=3^(1/2)+3^(-1/2)-2
3[x²+y²]²= 3[2(3^(1/2)+3^(-1/2)+2-2]²
3×2²[(3^(1/2)+3^(-1/2)]²
12×[3+ (1/3) + 2]
12×16 ÷ 3
64