Math, asked by priyanshu2569, 10 months ago

if x=√3 +1, find the value of x²+1/x²​

Answers

Answered by ItzArchimedes
11

Solution:

Given,

  • x = √3 + 1

To find ,

  • x² + 1/x²

_________________

x = √3 + 1

By squaring on both sides

x² = (√3 + 1)²

Using

(a + b)² = a² + + 2ab

→ x² = (√3)² + 1² + 2(√3)(1)

→ x² = 3 + 1 + 2√3

→ x² = 4 + 2√3

= 2(2 + 3)

Substituting the value of x² in + 1/

→ [2(2 + √3)] + 1/[2(2 + √3)]

→ [4 + 2√3]² + 1/4 + 2√3

→ 4² + (2√3)² + 2(4)(2√3) + 1/4 + 2√3

→ 16 + 12 + 16√3 + 1/4 + 2√3

→ 29 + 16√3/4 + 2√3

By rationalizing the denominator

→ (29 + 16√3)(4 - 2√3)/(4 + 2√3)(4 - 2√3)

→ 116 - 58√3 + 64√3 - 96/4² - (2√3)²

→ 20 + 6√3/16 - 12

Taking common

→ 2(10 + 3√3)/4

→ 10 + 3√3/2

Hence, + 1/ = 10 + 33/2

Answered by MaIeficent
15

• Given:-

• x = √3+1

To Find:-

• The value of x² + 1/x²

Solution:-

x = √3+1

\sf \implies {x}^{2}  =  { (\sqrt{3}  + 1)}^{2}

As we know that (a+b)² = a² + b² + 2ab

\sf \implies {x}^{2}  =  { (\sqrt{3}  )}^{2}  +  {1}^{2}  + 2( \sqrt{3} )(1)

\sf \implies {x}^{2}  =  {3}   +  {1}  + 2 \sqrt{3}

\sf \implies {x}^{2}  =  4+ 2 \sqrt{3}

\sf \implies {x}^{2}  =  2(2 +  \sqrt{3} )

The value of x² + 1/x²

\implies \sf {(4 + 2 \sqrt{3}) } +  \dfrac{1}{4 + 2 \sqrt{3} }

\implies \sf   \dfrac{   {(4 + 2 \sqrt{3} )}^{2}  + 1}{4 + 2 \sqrt{3} }

\implies \sf   \dfrac{   16 + 12 + 16 \sqrt{3}  + 1}{4 + 2 \sqrt{3} }

\implies \sf   \dfrac{   29 + 16 \sqrt{3}  }{4 + 2 \sqrt{3} }

Rationalising the denominator

\implies \sf   \dfrac{   29 + 16 \sqrt{3}  }{4 + 2 \sqrt{3} }  \times  \dfrac{4 - 2 \sqrt{3} }{4 - 2 \sqrt{3} }

\implies \sf   \dfrac{   116 - 58 \sqrt{3}  + 64 \sqrt{3} - 96  }{16 - 12 }

\implies \sf   \dfrac{  20 + 6 \sqrt{3}   }{4 }

\implies \sf   \dfrac{  2(10 + 3 \sqrt{3}  ) }{4 }

\implies \sf   \dfrac{  10+ 3 \sqrt{3}   }{2 }

\boxed{\sf   {x}^{2}  +  \frac{1}{ {x}^{2} }   = \dfrac{ 10 + 3 \sqrt{3}   }{2 }  }

Similar questions