if x=√3 +1, find the value of x²+1/x²
Answers
Answered by
11
Solution:
Given,
- x = √3 + 1
To find ,
- x² + 1/x²
_________________
x = √3 + 1
By squaring on both sides
x² = (√3 + 1)²
Using
(a + b)² = a² + b² + 2ab
→ x² = (√3)² + 1² + 2(√3)(1)
→ x² = 3 + 1 + 2√3
→ x² = 4 + 2√3
→ x² = 2(2 + √3)
Substituting the value of x² in x² + 1/x²
→ [2(2 + √3)] + 1/[2(2 + √3)]
→ [4 + 2√3]² + 1/4 + 2√3
→ 4² + (2√3)² + 2(4)(2√3) + 1/4 + 2√3
→ 16 + 12 + 16√3 + 1/4 + 2√3
→ 29 + 16√3/4 + 2√3
By rationalizing the denominator
→ (29 + 16√3)(4 - 2√3)/(4 + 2√3)(4 - 2√3)
→ 116 - 58√3 + 64√3 - 96/4² - (2√3)²
→ 20 + 6√3/16 - 12
Taking common
→ 2(10 + 3√3)/4
→ 10 + 3√3/2
Hence, x² + 1/x² = 10 + 3√3/2
Answered by
15
• Given:-
• x = √3+1
To Find:-
• The value of x² + 1/x²
Solution:-
x = √3+1
As we know that (a+b)² = a² + b² + 2ab
The value of x² + 1/x²
Rationalising the denominator
Similar questions