Math, asked by mamgainaregreat28, 1 year ago

if x^3 - 1/x^3 = 14 find x - 1/x

Answers

Answered by sivaprasath
4

Answer:

x - \frac{1}{x} = \sqrt[3]{(7 + 5\sqrt{2})} - \sqrt[3]{(5\sqrt{2} - 7)}

Step-by-step explanation:

Given :

x^3-\frac{1}{x^3}=14

Find the value of :

x-\frac{1}{x}

Solution :

x^3-\frac{1}{x^3}=14

\frac{x^6-1}{x^3}=14

x^6-1=14x^3

x^6 - 14x^3 - 1 = 0

As,

[-(7 - 5\sqrt{2})] + [-(7 + 5\sqrt{2})] =-14,

_

[-(7 - 5\sqrt{2})]\times[-(7 + 5\sqrt{2})]

[-7 + 5\sqrt{2}]\times[-7 - 5\sqrt{2}]

(-7)^2 - (5\sqrt{2})^2

(-7)^2 - (5)^2(\sqrt{2})^2

49 - 25(2) = 49 - 50 = -1

So,

x^6 - (7 + 5\sqrt{2})x^3 -(7 - 5\sqrt{2}) x^3 - 1 = 0

x^3[x^3 - (7 + 5\sqrt{2})] -(7 - 5\sqrt{2})[x^3 - (7+5\sqrt{2})] = 0

[x^3 - (7 + 5\sqrt{2})][x^3 -(7 - 5\sqrt{2})] = 0

x^3 - (7 + 5\sqrt{2}) = 0 (or) x^3 - (7 - 5\sqrt{2}) = 0

⇒  x^3 = (7 + 5\sqrt{2}) (or) x^3 = (7 - 5\sqrt{2})

x = \sqrt[3]{(7 + 5\sqrt{2})} (or) x = \sqrt[3]{(7 - 5\sqrt{2})}

x = \sqrt[3]{(7 + 5\sqrt{2})}

\frac{1}{x} = \frac{1}{\sqrt[3]{(7 + 5\sqrt{2})}} = \frac{1}{\sqrt[3]{(7 + 5\sqrt{2})}} \times \frac{\sqrt[3]{(7 - 5\sqrt{2})}}{\sqrt[3]{(7 - 5\sqrt{2})}} = \frac{\sqrt[3]{(7 - 5\sqrt{2})}}{-1}=-\sqrt[3]{(7 - 5\sqrt{2})}

x - \frac{1}{x} = \sqrt[3]{(7 + 5\sqrt{2})} - \sqrt[3]{-(7 - 5\sqrt{2})}

x - \frac{1}{x} = \sqrt[3]{(7 + 5\sqrt{2})} - \sqrt[3]{(5\sqrt{2} - 7)}

Similar questions