If x^3 + 1/x^3 = 2, find x + 1/x.
Answers
Step-by-step explanation:
Mark me on brain list...
EXPLANATION.
⇒ (x³ + 1/x³) = 2.
As we know that,
We can write equation as,
⇒ (x + 1/x)³ = x³ + 3(x)²(1/x) + 3(x)(1/x)² + (1/x)³.
⇒ (x + 1/x)³ = x³ + 1/x³ + 3x + 3/x.
Put the value of (x³ + 1/x³ = 2) in the equation, we get.
⇒ (x + 1/x)³ = 2 + 3(x + 1/x).
⇒ (x + 1/x)³ - 3(x + 1/x) - 2 = 0.
Let, we assume that,
⇒ (x + 1/x) = a.
⇒ a³ - 3a - 2 = 0.
Put the value of a = - 1 in the equation, we get.
⇒ (-1)³ - 3(-1) - 2 = 0.
⇒ - 1 + 3 - 2 = 0.
⇒ 3 - 3 = 0.
As, we can see that,
(a + 1) is a factor of equation : a³ - 3a - 2 = 0.
Now, divide the equation by : a + 1, we get.
⇒ (a + 1)[a² - a - 2] = 0.
⇒ (a + 1)[a² - 2a + a - 2] = 0.
⇒ (a + 1)[a(a - 2) + 1(a - 2)] = 0.
⇒ (a + 1)(a + 1)(a - 2) = 0.
⇒ (a + 1)²(a - 2) = 0.
⇒ a = - 1 and a = 2.
For all real values of x,
⇒ (x + 1/x) = a.
⇒ (x + 1/x) = 2.