Math, asked by bhatnagarkushaagra, 10 months ago

if x = 3-√13/2 find x^2 +1/x^2​

Answers

Answered by dhruvsingh0904
16

Answer:

-2

Step-by-step explanation:

(3-root13/2)^2+1/(3-root13/2)^2

9-13/4+1/9-13/4

9-13/4+1*4/9-13

9-13/4+4/9-13

-4/4+-4/4

-1+(-1)

-1-1

-2

Hope this helps you!!

Mark me as the brainliest!!

Answered by Qwparis
3

The correct answer is 11.

Given: x=\frac{3-\sqrt{13} }{2}.

To Find: The value of x^{2} +\frac{1}{x^{2}}.

Solution:

x^{2} +\frac{1}{x^{2}}

= (x+\frac{1}{x} )^{2} -2x*\frac{1}{x}

= (x+\frac{1}{x} )^{2} -2

Now, x=\frac{3-\sqrt{13} }{2}

(x+\frac{1}{x} )=(\frac{3-\sqrt{13} }{2}+\frac{2 }{3-\sqrt{13} } )

Take LCM and add the terms.

= \frac{(3-\sqrt{13})^{2} +4 }{2(3-\sqrt{13} )}

= \frac{9+13-6\sqrt{13}+4 }{6-2\sqrt{13} }

= \frac{26-6\sqrt{13} }{6-2\sqrt{13} }

= \frac{13-3\sqrt{13} }{3-\sqrt{13} }

= \frac{-\sqrt{13}( 3-\sqrt{13} ) }{3-\sqrt{13} }

x+\frac{1}{x} = -\sqrt{13}

(x+\frac{1}{x} )^{2} -2 = (-\sqrt{13} )^{2} -2

= 13 - 2

= 11

Hence, the answer is 11.

#SPJ2

Similar questions