Math, asked by dnagaming555, 5 months ago

if x=(3/2)²×(2/3)-⁴,find the value of x

Answers

Answered by pratikkumar1234
2

Answer:

x=2

Step-by-step explanation:

x=9/4*16/81

x=2

hope it helps ☺️☺️

Answered by Anonymous
10

\Large{\bold{\blue{\underline{\red{A}\pink{ns}\green{we}\purple{r:-}}}}}

\rm{\mapsto The \: value \: x \: is \:  11.39.}

\Large{\bold{\pink{\underline{\green{G}\purple{iv}\orange{en}\red{:-}}}}}

\displaystyle{\rm{\leadsto x = {\bigg(\frac{3}{2} \bigg)}^{2} \times }{\bigg(\frac{2}{3} \bigg)}^{ - 4}}

\Large{\bold{\blue{\underline{\red{To}\:\pink{Fin}\green{d}\purple{:-}}}}}

\rm{\leadsto The \: value \: x = \: ?}

\Large{\bold{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

\displaystyle{\tt{:\implies   x = {\bigg(\frac{3}{2} \bigg)}^{2} \times }{\bigg(\frac{2}{3} \bigg)}^{ - 4}}

When raising a fraction to the power, raise the numerator and denominator each to the power,

\displaystyle{\tt{:\implies  x = \frac{ {3}^{2} }{ {2}^{2} } \times }{\bigg(\frac{2}{3} \bigg)}^{ - 4}}

Calculate the power,

\displaystyle{\tt{:\implies x= \frac{9}{4} \times }{\bigg(\frac{2}{3} \bigg)}^{ - 4}}

When raising a fraction to the power, raise the numerator and denominator each to the power,

\displaystyle{\tt{:\implies x =\frac{9}{4} \times }\frac{ {2}^{ - 4} }{ {3}^{ - 4} }}

If the exponent is negative, change it to fraction,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times } \frac{ \frac{1}{ {2}^{ 4} } }{ {3}^{ - 4} } }

Arrange the expression of the complex fraction,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times \frac{1}{ {2}^{4} \times  {3}^{ - 4} } }}

Calculate the power,

\displaystyle{\tt{:\implies x= \frac{9}{4} \times \frac{1}{ 16\times  {3}^{ - 4} } }}

If the exponent is negative, change it to fraction,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times \frac{1}{ 16\times \frac{1}{ {3}^{4} } } }}

Calculate the power,

\displaystyle{\tt{:\implies x =  \frac{9}{4} \times \frac{1}{ 16\times \frac{1}{81} } }}

Natural number can be expressed as a fraction with a denominator 1,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times \frac{1}{ \frac{16}{1} \times \frac{1}{81} } }}

Numerator multiply between numerator, and denominator multiply between denominators,

\displaystyle{\tt{:\implies  x = \frac{9}{4} \times \frac{1}{ \frac{16 \times 1}{1 \times 81}} }}

Multiply any number by 1 does not change the value,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times \frac{1}{ \frac{16}{1 \times 81}} }}

Multiply any number by 1 does not change the value,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times \frac{1}{ \frac{16}{81}} }}

Calculate the complex fraction,

\displaystyle{\tt{:\implies x = \frac{9}{4} \times  \frac{81}{16} }}

Numerator multiply between numerator, and denominator multiply between denominators,

\displaystyle{\tt{:\implies x = \frac{9 \times 81}{4 \times 16} }}

Multiply 9 and 81,

\displaystyle{\tt{:\implies x = \frac{729}{4 \times 16} }}

Multiply 4 and 16,

\displaystyle{\tt{:\implies x = \frac{729}{64} }}

Divide the expression,

\displaystyle{\bf{:\implies \red{\boxed{\blue{\bf{x = 11.39}}}}}}

\textsf{\textbf{\underline{Hence, the value of x is 11.39.}}}

Similar questions
Math, 10 months ago