if x=3+2√2 and xy=1, then (x²+3xy+y²)/(x²-3xy+y²)
Answers
Answered by
10
x = (3+ 2√2) and xy = 1
y = 1/x =1/( 3 + 2√2)
=( 3 - 2√2)/(3 + 2√2)(3 -2√2)
=(3 -2√2)/(3² - 2√2²)
=(3 -2√2)/(9 -8)
= 3 -2√2
hence ,
(x + y) = 3 +2√2 + 3 -2√2 = 6
now,
(x² + 3xy + y²) = {(x² + y²) + 3xy }
= { (x + y)² -2xy + 3xy }
= { (x + y)² + xy }
= { ( 6)² + 1}
= 37
similarly ,
(x² -3xy + y²)
= { (x + y)² -2xy -3xy }
={ (x + y)² -5xy }
= { (6)² -5×1 }
= { 36 -5}
= 31
hence ,
(x² +3xy + y²)/(x² -3xy + y²) = 37/31
y = 1/x =1/( 3 + 2√2)
=( 3 - 2√2)/(3 + 2√2)(3 -2√2)
=(3 -2√2)/(3² - 2√2²)
=(3 -2√2)/(9 -8)
= 3 -2√2
hence ,
(x + y) = 3 +2√2 + 3 -2√2 = 6
now,
(x² + 3xy + y²) = {(x² + y²) + 3xy }
= { (x + y)² -2xy + 3xy }
= { (x + y)² + xy }
= { ( 6)² + 1}
= 37
similarly ,
(x² -3xy + y²)
= { (x + y)² -2xy -3xy }
={ (x + y)² -5xy }
= { (6)² -5×1 }
= { 36 -5}
= 31
hence ,
(x² +3xy + y²)/(x² -3xy + y²) = 37/31
Answered by
10
x = 3+2√2
xy = 1
y = 1/x
→ = 1/3+2√2
→ = 1(3-2√2)/(3+2√2)(3-2√2)
→ = 3-2√2/{3²-(2√2)²}
→ = 3-2√2/(9-4(2))
→ = 3-2√2/9-8
→ y = 3-2√2
x+y = 3+2√2+3-2√2
= 6
Let's solve first,
(x²+3xy+y²)
→ (x²+y²+3xy)
→ {(x+y)²-2xy}+3xy
→ {6²-2(1)} + 3(1)
→ 36-2+3
→ 37
Next,
(x²-3xy+y²)
→ (x²+y²-3xy)
→ {(x+y)²-2xy}-3xy
→ 6²-2(1)-3(1)
→ 36-2-3
→ 31
(x²+3xy+y²)/(x²-3xy+y²) = 37/31
Hope it helps …
xy = 1
y = 1/x
→ = 1/3+2√2
→ = 1(3-2√2)/(3+2√2)(3-2√2)
→ = 3-2√2/{3²-(2√2)²}
→ = 3-2√2/(9-4(2))
→ = 3-2√2/9-8
→ y = 3-2√2
x+y = 3+2√2+3-2√2
= 6
Let's solve first,
(x²+3xy+y²)
→ (x²+y²+3xy)
→ {(x+y)²-2xy}+3xy
→ {6²-2(1)} + 3(1)
→ 36-2+3
→ 37
Next,
(x²-3xy+y²)
→ (x²+y²-3xy)
→ {(x+y)²-2xy}-3xy
→ 6²-2(1)-3(1)
→ 36-2-3
→ 31
(x²+3xy+y²)/(x²-3xy+y²) = 37/31
Hope it helps …
Similar questions