If x=3+2√2 find the value of √x-1/√x)^3
Answers
Answered by
1
Answer:
8
Step-by-step explanation:
⇒ x = 3 + 2√2
⇒ x = 2 + 1 + 2√2
Writing 2 as ( √2 )^2 and 1 as 1^2 and 2√2 as 2(1)(√2):
⇒ x = ( √2 )^2 + ( 1 )^2 + 2( 1 )( √2 )
⇒ x = ( √2 + 1 )^2 { a^2 + b^2 + 2ab = ( a + b )^2 }
⇒ √x = √2 + 1
Thus,
1 / √x = 1 / ( √2 + 1 )
Multiply and divide by √2 - 1 :
⇒ 1 / √x = ( √2 - 1 ) / ( √2 + 1 )( √2 - 1 )
⇒ 1 / √x = ( √2 - 1 ) / ( 2 - 1 )
⇒ 1 / √x = √2 - 1
Hence,
⇒ √x - 1 / √x
⇒ √2 + 1 - ( √2 - 1 )
⇒ √2 + 1 - √2 + 1
⇒ 2
Thus,
( √x - 1 / √x )^3 = ( 2 )^3
= 8
Similar questions