Math, asked by rathoreshivi93, 1 month ago

if X=3+2√2, find the value of (√x-1/√x)​

Answers

Answered by sandy1816
1

x = 3 + 2 \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 6 \\ x +  \frac{1}{x}  - 2 = 4 \\ (  { \sqrt{x}  -  \frac{1}{ \sqrt{x} } })^{2}  = 4 \\  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  = ±2

★꧁༒☆Hopes it helps☆༒꧂★

Answered by pradiptadas2007
3

Answer:

Hope it helps you...↓↓↓

Step-by-step explanation:

•This evaluates to-

√2/1+√2

•The decimal form calculated to 10 digits is-

0.5857864376

•The rationalized form is-

√2×(√2-1)

Similar questions