Math, asked by nikitajha400, 1 year ago


If x=3+2√2 find the value of x^2+1/ x^2

Answers

Answered by snehitha2
3
x = 3+2√2

1/x = 1/3+2√2

= 1/3+2√2 × 3-2√2/3-2√2

= 3-2√2/(3+2√2)(3-2√2)

= 3-2√2/{3²-(2√2)²}

= 3-2√2/{9-4(2)}

= 3-2√2/9-8

= 3-2√2

x+1/x = 3+2√2+3-2√2

= 6

x²+1/x² = (x+1/x)²-2(x)(1/x)

= 6²-2

= 36-2

= 34

Hope it helps...

nikitajha400: Yes thank u
Answered by Anonymous
24

Answer:

⇒34

Step-by-step explanation:

Given ,

⇒x = 3 + 2√2

Hence ,

 =  >  \frac{1}{x}  =  \frac{1}{(3 + 2 \sqrt{2}) }

 =  >  \frac{1}{(3 + 2 \sqrt{2}) }  \times  \frac{(3 - 2 \sqrt{2} )}{(3 - 2 \sqrt{2}) }

 =  >  \frac{(3 - 2 \sqrt{2} )}{(3) ^{2}  - (2 \sqrt{2})^{2}}

 =  >  \frac{(3 - 2 \sqrt{2}) }{(9 - 8)}  = 3 - 2 \sqrt{2}

Hence ,

 =  > x +  \frac{1}{x}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  = 6

 =  > (x +  \frac{1}{x} )^{2}  = 6^{2}  = 36

 =  > x ^{2}  +  \frac{1}{x^{2} }  + 2 \times x \times  \frac{1}{x}   = 36

  =  > (x^{2}  +  \frac{1}{x^{2} } ) = 36 - 2

Hence ,

 =  > (x^{2}  +  \frac{1}{x^{2} } ) = 34

Similar questions