Math, asked by divyanshmaurya697, 9 months ago

if x=3+2√2 , find the value of x^2 + 1/x^2​

Answers

Answered by Anonymous
4

Solution:-

Given :-

 \rm \: x = 3 + 2 \sqrt{2}

To find :-

 \rm \:  {x}^{2}  +  \frac{1}{x {}^{2} }

Now put the value :-

 \rm \: (3 + 2 \sqrt{2} ) {}^{2}  +  \frac{1}{(3 + 2 \sqrt{2} ) {}^{2} }  {}^{}

Using this identity

 \rm \: (a \:  +  \: b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

we get

(3) {}^{2}  + (2 \sqrt{2} ) {}^{2}  + 2 \times 3 \times 2 \sqrt{2}  +  \frac{1}{(3) {}^{2}  + (2 \sqrt{2} ) {}^{2}  + 2 \times 3 \times 2 \sqrt{2} }

 \rm \: 9 + 8 + 12 \sqrt{2}  +  \frac{1}{9 + 8 + 12 \sqrt{2}  }

 \rm \: 17 + 12 \sqrt{2}  +  \frac{1}{17 + 12 \sqrt{2} }

Again take lcm

 \rm \:  \frac{(17 + 12 \sqrt{2} ) {}^{2}  + 1}{17 + 12 \sqrt{2} }

 \rm \:  \frac{(17) {}^{2}  + (12 \sqrt{2}) {}^{2}   + 2 \times 17 \times 12 \sqrt{2} + 1 }{17 + 12 \sqrt{2} }

 \rm \:  \frac{289 + 288 + 408 \sqrt{2} + 1 }{17 + 12 \sqrt{2} }

 \rm \:  \frac{289 + 289 + 408 \sqrt{2} }{17 + 12 \sqrt{2} }

 \rm \:  \frac{578 + 408 \sqrt{2} }{17 + 12 \sqrt{2} }

 \rm \:  \frac{34(17 +  12 \sqrt{2} )}{17 + 12 \sqrt{2} }

 \rm \:  \to \: 34

Answer:- 34

Answered by InfiniteSoul
4

\sf{\underline{\boxed{\large{\blue{\mathsf{Question}}}}}}

  • if \sf x = 3 + 2\sqrt 2 , find the value of \sf x^2 + \dfrac{1}{x}^2

_______________________

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • \sf x = 3 + 2\sqrt 2

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • \sf x^2 + \dfrac{1}{x}^2

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{x = 3 + 2\sqrt 2 }}}}

  • Finding the value of \sf\dfrac{1}{x}

\sf\implies \dfrac{1}{3 + 2\sqrt 2}

Rationalize the denominator

\sf\implies \dfrac{1}{3 + 2\sqrt 2}\times\dfrac{3 - 2\sqrt 2 }{ 3 - 2  \sqrt 2}

\sf{\orange{\boxed{\bold{( a + b ) ( a - b ) = a^2 - b^2 }}}}

\sf\implies \dfrac{3 - 2\sqrt 2 }{3^2 + (2\sqrt 2)^2}

\sf\implies \dfrac{ 3 - 2 \sqrt 2}{9 - 8 }

\sf\implies \dfrac{ 3 - 2\sqrt 2}{1}

\sf{\red{\boxed{\bold{\dfrac{1}{x} = 3 - 2\sqrt 2 }}}}

______________________

\sf{\orange{\boxed{\bold{ ( x + \dfrac{1}{x})^2 = x^2+ \dfrac{1}{x^2} + 2 }}}}

\sf\implies ( 3 +2\sqrt 2 + 3 - 2\sqrt 2 )^2 = x^2 +\dfrac{1}{x^2} + 2

\sf\implies ( 3  + 3  )^2 = x^2 +\dfrac{1}{x^2} + 2

\sf\implies ( 6 )^2 = x^2 +\dfrac{1}{x^2} + 2

\sf\implies 36 = x^2 +\dfrac{1}{x^2} + 2

\sf\implies 36 - 2  = x^2 +\dfrac{1}{x^2}

\sf\implies  x^2 +\dfrac{1}{x^2} = 34

\sf{\red{\boxed{\bold{x^2 + \dfrac{1}{x^2} = 34 }}}}

________________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • \sf\longrightarrow\dag  x +\dfrac{1}{x^2} = 34
Similar questions