Math, asked by divyanshmaurya697, 9 months ago

if x=3+2√2 , find the value of x^2 + 1/x^2​

Answers

Answered by sagnikhalnerff
0

Answer:

regebsbebwbbwjwwnwhwnw

wnwnwnw

Step-by-step explanation:

wnnanqnananajeuw

Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

x=3+2√2

So

 \displaystyle \:  \frac{1}{x}  =  \frac{1}{3+2√2 }

 \implies \:  \displaystyle \:  \frac{ 1 }{x}  =  \frac{3 - 2√2 }{(3  + 2√2) (3 - 2√2)}

 \implies \:  \displaystyle \:  \frac{ 1 }{x}  =  \frac{3 - 2√2 }{{3}^{2}  -  ({  2√2})^{2} }

 \implies \:  \displaystyle \:  \frac{ 1 }{x}  =  \frac{3 - 2√2 }{9 - 8}

 \implies \:  \displaystyle \:  \frac{ 1 }{x}  =  {3 - 2√2 }

So

 \displaystyle \:  x + \frac{ 1 }{x}  =  {3  + 2√2 }  +  3  +  2 \sqrt{2}  = 6

So

 \displaystyle \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

 =  \displaystyle \:  {(x +  \frac{1}{x} )}^{2}   - 2 \times x \times  \frac{1}{x}

 =  {6}^{2}  - 2

 = 36 - 2

 = 34

Similar questions