Math, asked by emma18, 1 year ago

If x = 3+2√2 , find the value of x^2+1/x^2 ?

Answers

Answered by DaIncredible
3
Hey friend,
Here is the answer you were looking for:
x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \\ on \: rationalizing \: we \: get \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\ using \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{3 - 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = (3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} ) \\  \\ x +  \frac{1}{x}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 3 + 3 \\  \\ x +  \frac{1}{x}  = 6 \\  \\ squaring \: both \: side \\  \\  {(x +  \frac{1}{x} )}^{2}  =  {(6)}^{2}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2 \\  \\   {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

Hope this helps!!!

@Mahak24

Thanks...
☺☺

emma18: Thank you so much!! @Mahak24
DaIncredible: my pleasure.... Glad to help
Similar questions