Math, asked by dipayandeb80, 3 months ago

If X= 3+2√2,find the value of x^2 + 1/x^2

Answers

Answered by StormEyes
3

Solution!!

Given:- x = 3 + 2√2

To find:- x² + 1/x²

x² = (3 + 2√2)²

= (3)² + (2√2)² + 2(3)(2√2)

= 9 + 8 + 12√2

x² = 17 + 12√2

1/x² = 1/(17 + 12√2)

= 1/(17 + 12√2) × (17 - 12√2)/(17 - 12√2)

= [1(17 - 12√2)]/[(17 + 12√2)(17 - 12√2)]

= [17 - 12√2]/[(17)² - (12√2)²]

= [17 - 12√2]/[289 - 288]

= (17 - 12√2)/1

1/x² = 17 - 12√2

x² + 1/x² = (17 + 12√2) + (17 - 12√2)

= 17 + 12√2 + 17 - 12√2

= 17 + 17 + 12√2 - 12√2

- 1/ = 34

Identities used:-

→ (a + b)² = a² + b² + ab

→ (a + b)(a - b) = a² - b²

More identities:-

→ (a - b)² = a² + b² - 2ab

→ (a + b)³ = a³ + b³ + 3ab(a + b)

→ (a - b)³ = a³ - b³ - 3ab(a - b)

→ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

→ (x + a)(x + b) = x² + (a + b)x + ab

Answered by 12thpáìn
3

Given

  •  \sf{x = 3 + 2 \sqrt{2} }

To Find

  •  \sf{Value~ of  \:  \:  \bf~  {x}^{2}  +  \dfrac{1}{ {x}^{2} } }

Solution

\sf{x = 3 + 2 \sqrt{2} }

On Squaring both sides

\sf{~~~~~:~~~\implies {x}^{2}  ={ (3 + 2 \sqrt{2} ) }^{2} }

{ ~~~~~~~~~~~~~~~~~~\sf{Using ~Identity \:  \: _{ \pink{(a+b)²=a²+b²+2ab}}}}

\sf{~~~~~:~~~\implies {x}^{2}  ={  {3}^{2} + {(2 \sqrt{2} ) }^{2}  } + 2 \times 3 \times 2 \sqrt{2}  }

\sf{~~~~~:~~~\implies {x}^{2}  = 9 + (4 \times 2 ) + 12 \sqrt{2}  }

\sf{~~~~~:~~~\implies {x}^{2}  = 9 +8+ 12 \sqrt{2}  }

\sf{\pink{~~~~~:~~~\implies {x}^{2}  = 17 + 12 \sqrt{2} } }\\\\

\sf~~~~~:~~~\implies  \dfrac{1}{ {x}^{2} }  =  \dfrac{1}{17 + 12 \sqrt{2}   } \times  \dfrac{17 - 12 \sqrt{2} }{17 - 12 \sqrt{2} }

{ ~~~~~~~~~~~~~~~~~~\sf{Using ~Identity \:  \: _{ \pink{(a+b)(a-b)=a²-b²}}}}

\sf ~~~~~:~~~\implies\dfrac{1}{ {x}^{2} }  =  \dfrac{17 - 12 \sqrt{2} }{ {17}^{2}  -  {(12 \sqrt{2} } )^{2}   }

\sf ~~~~~:~~~\implies \dfrac{1}{ {x}^{2} }  =  \dfrac{17 - 12 \sqrt{2} }{ 289-  (144 \times 2)  }

\sf ~~~~~:~~~\implies \dfrac{1}{ {x}^{2} }  =  \dfrac{17 - 12 \sqrt{2} }{ 289- 288  }

\sf\pink{ ~~~~~:~~~\implies \dfrac{1}{ {x}^{2} }  =  17  - 12 \sqrt{2}}    \\\\

{ ~~~~~:~~~\implies \sf{x}^{2}  +  \dfrac{1}{ {x}^{2} }  = (17 + 12 \sqrt{2} ) + (17 - 12 \sqrt{2}) }

{~~~~~:~~~\implies  \sf{x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 17 + \xcancel{ 12 \sqrt{2}}  +  17  \xcancel{- 12 \sqrt{2}} }

{ ~~~~~:~~~\implies \bf{\pink{\overbrace{\underbrace{\red{{x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 34}}}} }}

\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{\blue{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\\dashrightarrow \sf(a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab \\\dashrightarrow \sf(a + b)(a - b)  =  {a}^{2}   -   {b}^{2} \\\dashrightarrow \sf(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b) \\ \dashrightarrow\sf(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b) \\ \dashrightarrow\sf a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab) \\\dashrightarrow \sf a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab \\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions