If X= 3+2√2,find the value of x^2 + 1/x^2
Answers
Answered by
3
Solution!!
Given:- x = 3 + 2√2
To find:- x² + 1/x²
x² = (3 + 2√2)²
= (3)² + (2√2)² + 2(3)(2√2)
= 9 + 8 + 12√2
x² = 17 + 12√2
1/x² = 1/(17 + 12√2)
= 1/(17 + 12√2) × (17 - 12√2)/(17 - 12√2)
= [1(17 - 12√2)]/[(17 + 12√2)(17 - 12√2)]
= [17 - 12√2]/[(17)² - (12√2)²]
= [17 - 12√2]/[289 - 288]
= (17 - 12√2)/1
1/x² = 17 - 12√2
x² + 1/x² = (17 + 12√2) + (17 - 12√2)
= 17 + 12√2 + 17 - 12√2
= 17 + 17 + 12√2 - 12√2
x² - 1/x² = 34
Identities used:-
→ (a + b)² = a² + b² + ab
→ (a + b)(a - b) = a² - b²
More identities:-
→ (a - b)² = a² + b² - 2ab
→ (a + b)³ = a³ + b³ + 3ab(a + b)
→ (a - b)³ = a³ - b³ - 3ab(a - b)
→ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
→ (x + a)(x + b) = x² + (a + b)x + ab
Answered by
3
Given
To Find
Solution
On Squaring both sides
Similar questions