Math, asked by faryabkhan20, 1 year ago

if x=3-2√2 find the value of x^4+1/x^4​

Answers

Answered by Anonymous
4

 \sf{x = 3 - 2 \sqrt{2} }

 \sf \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }

rationalise the denominator

 \sf \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2}  }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }

 \sf \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{ {3}^{2} -{ (2 \sqrt{2} )}^{2} }

 \sf \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{ 9 -8}

\sf \frac{1}{x}  =  {3 + 2 \sqrt{2} }

 \sf {x + \frac{1}{x}  =  3  -  2 \sqrt{2}  + 3 + 2 \sqrt{2} }

 \sf {x + \frac{1}{x}  =  6}

squaring on both sides

\sf {{(x + \frac{1}{x})}^{2}  =   {6}^{2} }

\sf {{{x}^{2} + \frac{1}{{x}^{2} }}  + 2=  36 }

\sf {{{x}^{2} + \frac{1}{{x}^{2} }}  =  36  - 2}

\sf {{{x}^{2} + \frac{1}{{x}^{2} }}  =  34}

now again squaring on both sides

\sf {{{({x}^{2} + \frac{1}{{x}^{2} }}) }^{2}   =   {34}^{2} }

\sf {{{x}^{4} + \frac{1}{{x}^{4} }} + 2    =   1156 }

 \fbox{\sf {{{x}^{4} + \frac{1}{{x}^{4} }}   =   1154 }    }


rajat5073: hi
rajat5073: dear
rajat5073: I love u
rajat5073: please be my gf
Similar questions