Math, asked by sarthakjain047, 9 months ago

if x=3+2√2 find the value of x square+1/xsquare

Answers

Answered by rahulsaab8808
0

Answer:

x = 3 + 2√2 ---( 1 )

1/x = 1/( 3 + 2√2 )

= ( 3 - 2√2 )/[ ( 3 + 2√2 )( 3 - 2√2 )]

= ( 3 - 2√2 )/ [ 3² - ( 2√2 )² ]

= ( 3 - 2√2 ) / ( 9 - 8 )

= 3 - 2√2 ----( 2 )

x + 1/x = 3 + 2√2 + 3 - 2√2

= 6 ----( 3 )

Now ,

do the Square of equation ( 3 ) , we get

( x + 1/x )² = 6²

x² + 1/x² + 2 = 36

x² + 1/x² = 36 - 2

= 34

I hope this helps you.

: )

Answered by Anonymous
3

❏ SolutioN :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\blacksquare\:\:\footnotesize{\underline{\underline{Given}}}

\footnotesize{X=3+2\sqrt{2}}

\blacksquare\:\:\footnotesize{\underline{\underline{To\: Find}}}

\footnotesize{(x^2+\dfrac{1}{x^2})=?}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\longrightarrow\footnotesize{X=3+2\sqrt{2}}

\longrightarrow\footnotesize{\dfrac{1}{X}=\dfrac{1}{3+2\sqrt{2}}}

\longrightarrow\footnotesize{\dfrac{1}{X}=\dfrac{1(3-2\sqrt{2})}{(3+2\sqrt{2})(3-2\sqrt{2})}}

\longrightarrow\footnotesize{\dfrac{1}{X}=\dfrac{1(3-2\sqrt{2})}{3^2-(2\sqrt{2})^2}}

\longrightarrow\footnotesize{\dfrac{1}{X}=\dfrac{1(3-2\sqrt{2})}{9-8}}

\longrightarrow\footnotesize{\dfrac{1}{X}=(3-2\sqrt{2})}

\therefore\:\footnotesize{X^2+\dfrac{1}{X^2}}

\implies\footnotesize{(X+\dfrac{1}{X})^2-2\times X\times\dfrac{1}{X}}

\implies\footnotesize{(X+\dfrac{1}{X})^2-2}

\footnotesize{putting\:values\:X\:and\:\dfrac{1}{X}\:,\,we\: get }

\implies\footnotesize{[(3+2\sqrt{2})+(3-2\sqrt{2})]^2-2}

\implies\footnotesize{[3+\cancel{2\sqrt{2}}+3-\cancel{2\sqrt{2}}]^2-2}

\implies\footnotesize{(3+3)^2-2}

\implies\footnotesize{(6)^2-2}

\implies\footnotesize{36-2}

\implies\footnotesize{34}

\therefore\:\:\:\boxed{\footnotesize{(X^2+\dfrac{1}{X^2})=34}} if \footnotesize{X=3+2\sqrt{2}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions