Math, asked by helping53, 7 months ago

if x=3+2√2 , find the value of x²+1/x²​

Answers

Answered by rsagnik437
30

Given:-

→ x = 3+22

To find:-

→ Value of (x²+1/x²)

Solution:-

We know that:-

=> (a+b)² = + + 2ab

=> (x+1/x)² = x²+1/x²+2×x×1/x

=> (x+1/x)² = x²+1/x²+2

=> x²+1/x² = (x+1/x)²-2

Firstly, let's calculate the value of 1/x

=> 1/x = 1/(3+2√2)

On rationalizing 1/(3+2√2), we get:-

=> 1/(3+2√2)×(3-2√2)/(3-2√2)

=> (3-2√2)/(3)²-(2√2)²

=> 3-2√2/9-8

=> 3-22

Hence, value of 1/x is 3-22

Now:-

=> x²+1/x² = (3+2√2+3-2√2)²-2

=> x²+1/x² = (6)²-2

=> x²+1/x² = 36-2

=> +1/ = 34

Thus, value of (+1/) is 34.

Answered by vanshikavikal448
64

 \huge \bold \color{green}  \mid{ \underline{ \underline  \red{question: }}}  \mid

 \bold{if \: x = 3 + 2 \sqrt{2} } \\ \bold{ then \: find \: value \: of \:  {x}^{2}  +  \frac{1}{{x}^{2} } }

 \huge \bold \color{green}  \mid{ \underline{ \underline \orange{answer \bf : }}} \mid

  \bold{\frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} } } \\ \\  on \: rationalizing \: we \: get \\ \\  \bold{  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } } \\ \\   \bold{ \implies \frac{1}{x }  =  \frac{3 - 2 \sqrt{2} }{9 - 8} } \\  \\  \bold {  \implies \:  \frac{1}{x}  = 3 - 2 \sqrt{2} }

now..

 \bold{x +  \frac{1}{x}  =( 3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} })

   \bold{ \implies x +  \frac{1}{x} = 3 + 3 + 2 \sqrt{2} - 2 \sqrt{2}   } \\   \\ \bold{ \implies \: x +  \frac{1}{x}  = 3 + 3 =  6}

on squaring both sides..

 \bold{( {x +  \frac{1}{x} )}^{2}  =  {6}^{2} }\\  \\  \bold{  \implies{x}^{2}   +  \frac{1}{ {x}^{2} }  + 2 = 36} \\  \\  \bold{ \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34}

so the value of x²+1/x² is 34

Similar questions